

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

- Integrated 600 V full-bridge gate driver
- CT, RT programmable oscillator
- 15.6 V Zener clamp on V_{CC}
- Micropower startup
- Logic level latched shutdown pin
- Non-latched shutdown on CT pin (1/6th V_{CC})
- Internal bootstrap FETs
- Excellent latch immunity on all inputs & outputs
- ESD protection on all pins
- 14-lead SOIC or PDIP package
- 0.5 or 1.0µs (typ.) internal dead time
- RoHS compliant

Product Summary

Topology	Full-bridge
V _{OFFSET}	600 V
I _{o+} & I _{o-} (typical)	180 mA & 260 mA
Deadtime (typical)	1.0 μs (IRS2453D) 0.5 μs (IRS24531D)

Package Options

14 Lead PDIP IRS2453DPbF

14 Lead SOIC (Narrow Body) IRS2453(1)DSPbF

Ordering Information

B B I N	Danka wa Tama	Standard F	Pack	O Boot Noveles
Base Part Number	Package Type	Form Quantity		Complete Part Number
	PDIP14	Tube/Bulk	25	IRS2453DPBF
IRS2453D(S)	SOIC14N	Tube/Bulk	55	IRS2453DSPBF
		Tape and Reel	2500	IRS2453DSTRPBF
1000450400	00104411	Tube/Bulk	55	IRS24531DSPBF
IRS24531DS	SOIC14N	Tape and Reel	2500	IRS24531DSTRPBF

© 2016 International Rectifier April 27, 2016

IRS2453(1)D(S)

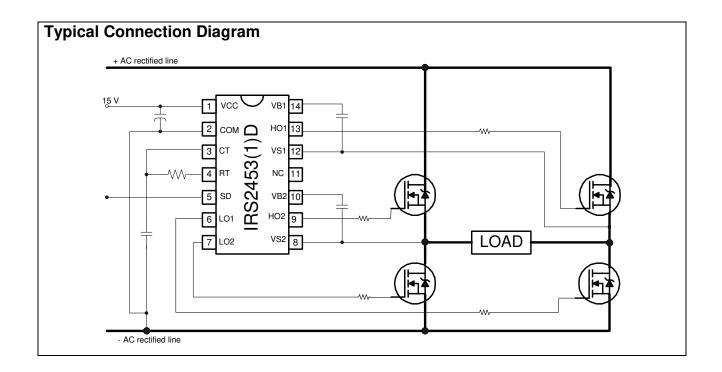


Table of Contents	Page
Ordering Information	1
Description	3
Typical Connection Diagram	3
Qualification Information	4
Absolute Maximum Ratings	5
Recommended Operating Conditions	6
Recommended Component Values	6
Electrical Characteristics	7
Functional Block Diagram	9
Input / Output Pin Equivalent Circuit Diagram	10
Lead Definitions	11
Lead Assignments	11
Application Information and Additional Details	12
Package Details	15
Tape and Reel Details	16
Part Marking Information	17

Description

The IRS2453(1)D is based on the popular IR2153 self-oscillating half-bridge gate driver IC, and incorporates a high voltage full-bridge gate driver with a front end oscillator similar to the industry standard CMOS 555 timer. HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The output driver features a high pulse current buffer stage designed for minimum driver cross-conduction. Noise immunity is achieved with low di/dt peak of the gate drivers, and with an under voltage lockout hysteresis greater than 1.5 V. The IRS2453(1)D also includes latched and non-latched shutdown pins.

Qualification Information[†]

			Industrial ^{††}		
Qualification Level			his family of ICs has passed JEDEC's		
			fication. IR's Consumer qualification level is		
		granted by exte	ension of the higher Industrial level.		
		SOIC14	MSL2 ^{†††} 260°C		
Moisture Sensitivity Level		501014	(per IPC/JEDEC J-STD-020)		
		PDIP14	Not applicable		
			(non-surface mount package style)		
	Machine Model		Class C		
ESD	Macrime Model	(pe	(per JEDEC standard JESD22-A115)		
E3D	Lluman Dady Madal		Class 2		
	Human Body Model		(per EIA/JEDEC standard EIA/JESD22-A114)		
IC Latch-Up Test			Class I, Level A		
			(per JESD78)		
RoHS Complian	t	Yes			

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal

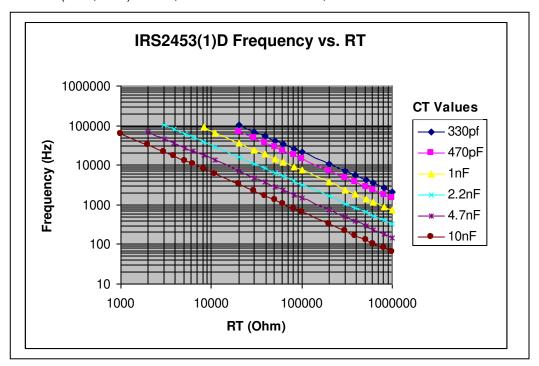
resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
VB1, VB2	High side floating supply voltage	-0.3	625	
VS1, VS2	High side floating supply offset voltage	VB - 25	VB + 0.3	
V_{HO1}, V_{HO2}	High side floating output voltage	VS - 0.3	VB + 0.3	
$egin{array}{c} egin{array}{c} egin{array}{c} V_{LO1}, \ V_{LO2} \end{array}$	Low side output voltage	-0.3	VCC + 0.3	V
VRT	RT pin voltage	-0.3	VCC + 0.3	
VCT	CT pin voltage	-0.3	VCC + 0.3	
VSD	SD pin voltage	-0.3	VCC + 0.3	
IRT	RT pin current	-5	5	mΛ
ICC	Supply current (†)		25	mA
dV _S /dt	Allowable offset voltage slew rate	-50	50	V/ns
PD	Maximum power dissipation @ T _A ≤ +25 ^o C, PDIP14		1.6	
PD	Maximum power dissipation @ T _A ≤ +25 ^o C, SOIC14N		1.0	W
R ₀ JA	Thermal resistance, junction to ambient, PDIP14		75	
R ₀ JA	Thermal resistance, junction to ambient, SOIC14N		120	ºC/W
TJ	Junction temperature	-55	150	
TS	Storage temperature	-55	150	ōC
TL	Lead temperature (soldering, 10 seconds)		300	

[†] This IC contains a zener clamp structure between the chip VCC and COM which has a nominal breakdown voltage of 15.6 V. Please note that this supply pin should not be driven by a DC, low impedance power source greater than the VCLAMP specified in the Electrical Characteristics section.

Recommended Operating Conditions

For proper operation the device should be used within the recommended conditions.


Symbol	Definition	Min.	Max.	Units
VBS1, VBS2	High side floating supply voltage	VCC - 0.7	VCLAMP	
VS1, VS2	Steady state high side floating supply offset voltage	-3.0 (†)	600	V
VCC	Supply voltage	V_{CCUV+}	VCLAMP	
ICC	Supply current	(††)	5	mA
TJ	Junction temperature	-25	125	ºC

[†] It is recommended to avoid output switching conditions where negative-going spikes at the V_S node would decrease V_S below ground by more than -5V.

Recommended Component Values

Symbol	Component	Min.	Max.	Units
RŢ	Timing resistor value	1		kΩ
СТ	CT pin capacitor value	330		pF

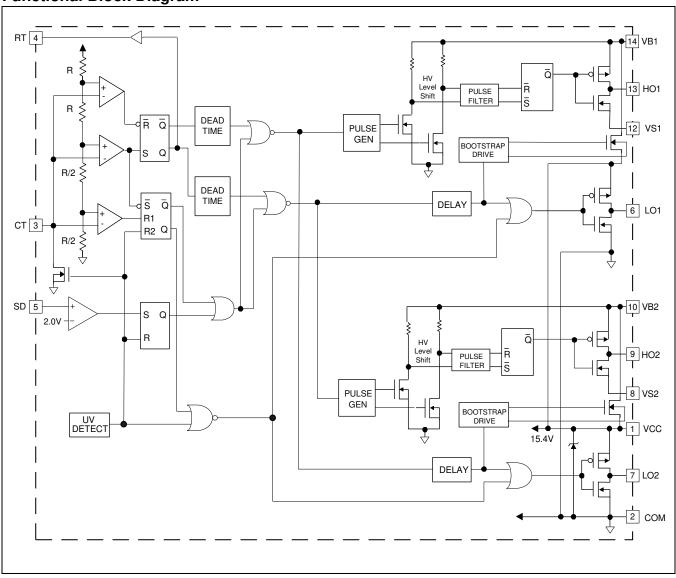
VBIAS (VCC, VBS) = 14 V, VS=0 V and TA = 25 °C, CLO1=CLO2 = CHO1=CHO2 = 1nF.

^{††} Enough current should be supplied to the VCC pin of the IC to keep the internal 15.6 V zener diode clamping the voltage at this pin.

Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 14 V, C_T = 1nF and T_A = 25 °C unless otherwise specified. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO. CLO1=CLO2=CHO1=CHO2=1nF.

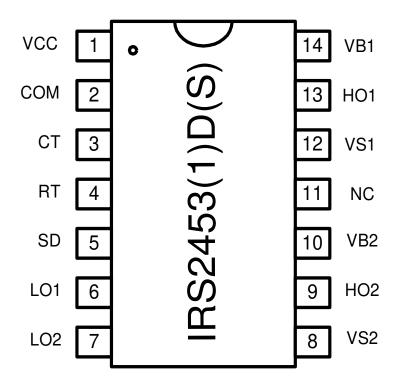
Symbol	CLO1=CLO2=CHO1=CHO2=1nF. Definition Min Typ Max				Units	Test Conditions
_	ge Supply Characteristics		1 7 12	Wax	Omis	rest conditions
VCCUV+	Rising VCC under voltage lockout threshold	10.0	11.0	12.0		
VCCUV-	Falling VCC under voltage lockout threshold	8.0	9.0	10.0	V	
VCCUVH	VCC under voltage lockout hysteresis	1.5	2.0	2.4	ľ	
IQCCUV	Micropower startup VCC supply current		140	200	μΑ	VCC ≤ VCCUV-
IQCC	Quiescent V _{CC} supply current		1.3	2.0	μπ	VOC <u> </u>
I _{CC 20K}	V_{CC} supply current at f_{osc} (R _T = 36.5 kΩ)		3.0	3.5	mA	
	V_{CC} supply current when SD > V_{SD}		360	500	μΑ	
VCLAMP	VCC Zener clamp voltage	14.6	15.6	16.6	V	ICC = 5 mA
	upply Characteristics	14.0	13.0	10.0	V	ICC = 3 IIIA
	uppry Characteristics	1	1		1	
IQBS1UV, IQBS2UV	Micropower startup VBS supply current		3	10	μΑ	VCC ≤ VCCUV- , VCC = VBS
IQBS1, IQBS2	Quiescent VBS supply current		30	100	P .	
VBS1UV+, VBS2UV+	VBS supply under voltage positive going threshold	8.0	9.0	10.0	.,	
VBS1UV-, VBS2UV-	VBS supply under voltage negative going threshold	7.0	8.0	9.0	V	
ILK1, ILK2	Offset supply leakage current			50	μΑ	VB = VS = 600
Oscillator	I/O Characteristics	I	1		<u> </u>	V V
(0.00	0	19.6	20.2	20.8	kHz	RT = 36.5 kΩ
fOSC	Oscillator frequency	88	94	100		RT = 7.15 kΩ
d	RT pin duty cycle	48	50	52	%	f _o < 100 kHz
ICT	CT pin current		0.05	1.0	μА	
ICTUV	UV-mode CT pin pull down current	1	5		mA	$V_{CC} = 7 \text{ V}$
VCT+	Upper CT ramp voltage threshold		9.3		.,	
VCT-	Lower CT ramp voltage threshold		4.7		V	
VRT+	High level RT output voltage, VCC - VRT		10	50		IRT = 100 μA RT = 140 kΩ
VKI+	nigh level h output voltage, VCC - VR		100	300		IRT = 1 mA RT = 14 kΩ
VDT	Low lovel PT output voltage		10	50	mV	IRT = 100 μA RT = 140 kΩ
VRT-	Low level RT output voltage		100	300		IRT = 1 mA RT = 14 kΩ
VRTUV	UV-mode RT output voltage		0	100		VCC ≤ VCCUV-


Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 14 V, C_T = 1nF and T_A = 25 °C, unless otherwise specified. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO. CLO1=CLO2=CHO1=CHO2=1nF.

Symbol	CLO1=CLO2=CHO1=CHO2=1nl Definition	•	Min	Тур	Max	Units	Test Conditions
Gate Driv	er Output Characteristics		II.		I	I	1
VOH	High level output voltage, VBIA	S - VO		V_{CC}			IO = 0 A
VOL	Low level output voltage, VO			СОМ			10 = 0 A
VOL_UV	UV-mode output voltage, VO			СОМ		V	IO = 0 A, VCC ≤ VCCUV-
t_r	Output rise time			120	200		
t _f	Output fall time			50	100	ns	
t_{sd}	Shutdown propagation delay			250			
+	Output dead time (HO or LO)	IRS2453D	0.8	1.0	1.40	0	
t _d	Output dead time (HO of LO)	IRS24531D	0.4	0.5	0.7	μS	
I_{O+}	Output source current			180		mA	
I _{O-}	Output sink current			260		111/3	
Shutdow	n						
V_{SD}	Shutdown threshold at SD pin (latched)	1.8	2.0	2.3	V	
VCTSD	CT voltage shutdown threshold	(non-latched)	2.2	2.3	2.5	V	
VRTSD	SD mode RT output voltage, Vo	CC - VRT		10	50	mV	$IRT = 100 \ \mu\text{A},$ $RT = 140 \ k\Omega$ $V_{CT} = 0 \ V$
				100	300	111 V	$IRT = 1 \text{ mA},$ $RT = 14 \text{ k}\Omega$ $V_{CT} = 0 \text{ V}$
Bootstrap FET Characteristics						1	
$V_{B1_ON} \ V_{B2\ ON}$	V_{B} when the bootstrap FET is on		13.7	14.0		V	
I _{B1_CAP} I _{B2 CAP}	V _B source current when FET is on		40	55			C _{BS} =0.1 μF
I _{B1_10 V} I _{B2_10 V}	V _B source current when FET is	on	10	12		mA	V _B =10 V

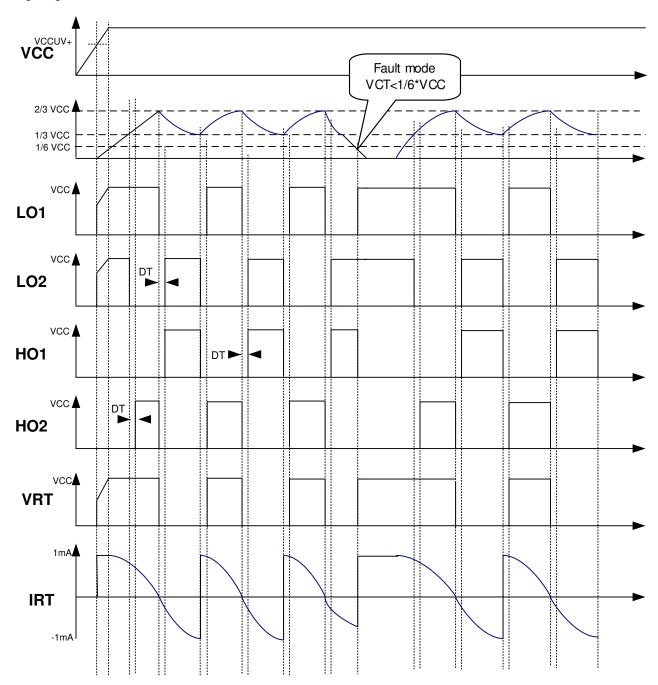
Functional Block Diagram


Input / Output Pin Equivalent Circuit Diagrams: VB1 🗖 VB2 **ESD ESD** Diode Diode HO1 🗖 25V HO2 🗖 25V **ESD ESD** Diode Diode VS1 VS2 🗖 600V 600V vcc 🗅 vcc 🗅 ESD **ESD** Diode Diode LO2 📮 25V LO1 📮 25V **ESD ESD** Diode Diode сом 🕈 сом 🛱 vcc □vcc 🗖 **ESD ESD** Diode Diode 25V SD \Box R_{ESD} **ESD ESD** Diode Diode сом 🗗 vcc 🗖 **ESD** Diode СТ R_{ESD} **ESD** Diode сом 🗖

Lead Definitions

Pin	Symbol	Description			
1	VCC	Logic and internal gate drive supply voltage			
2	COM	IC power and signal ground			
3	CT	Oscillator timing capacitor input			
4	RT	Oscillator timing resistor input			
5	SD	Shutdown input			
6	LO1	Low side gate driver output			
7	LO2	Low side gate driver output			
8	VS2	High voltage floating supply return			
9	HO2	High side gate driver output			
10	VB2	High side gate driver floating supply			
11	NC	No connect			
12	VS1	High voltage floating supply return			
13	HO1	High side gate driver output			
14	VB1	High side gate driver floating supply			

Lead Assignment


© 2016 International Rectifier April 27, 2016

April 27, 2016

Application Information and Additional Details

Timing Diagram

Functional Description

Under-Voltage Lock-Out Mode (UVLO)

The under-voltage lockout mode (UVLO) is defined as the state the IC is in when V_{CC} is below the turn-on threshold of the IC. The IRS2453(1)D under-voltage lock-out is designed to maintain an ultra low supply current of less than 150 □A, and to guarantee the IC is fully functional before the high and low side output drivers are activated. During under-voltage lock-out mode, the high and low side driver outputs LO1, LO2, HO1, HO2 are all low. With V_{CC} above the V_{CCUV+} threshold, the IC turns on and the output begin to oscillate.

Normal Operating Mode

Once V_{CC} reaches the start-up threshold V_{CCUV_+} , the MOSFET M1 opens, RT increases to approximately V_{CC} $(V_{CC}-V_{RT+})$ and the external CT capacitor starts charging. Once the CT voltage reaches V_{CT-} (about 1/3 of V_{CC}), established by an internal resistor ladder, LO1 and HO2 turn on with a delay equivalent to the dead time (t_d). Once the CT voltage reaches V_{CT+} (approximately 2/3 of V_{CC}), LO1 and HO2 go low, RT goes down to approximately ground (V_{RT-}), the CT capacitor starts discharging and the dead time circuit is activated. At the end of the dead time, LO2 and HO1 go high. Once the CT voltage reaches V_{CT}., LO2 and HO1 go low, RT goes to high again, the dead time is activated. At the end of the dead time, LO1 and HO2 go high and the cycle starts over again.

The frequency is best determined by the graph, Frequency vs. RT, page 3, for different values of CT. A first order approximate of the oscillator frequency can also be calculated by the following formula:

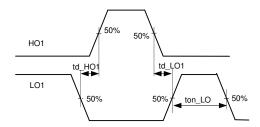
$$f \approx \frac{1}{1.453 \times RT \times CT}$$

This equation can vary slightly from actual measurements due to internal comparator over- and under-shoot delays.

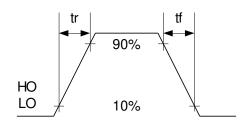
Bootstrap MOSFET

The internal bootstrap FET and supply capacitor (CBOOT) comprise the supply voltage for the high side driver circuitry. The internal bootstrap FET only turns on when the corresponding LO is high. To guarantee that the highside supply is charged up before the first pulse on HO1 and HO2, LO1 and LO2 outputs are both high when CT ramps between zero and 1/3*V_{CC}. LO1 and LO2 are also high when CT is grounded below 1/6*V_{CC} to ensure that the bootstrap capacitor is charged when CT is brought back over 1/3*V_{CC}.

Non-Latched Shutdown

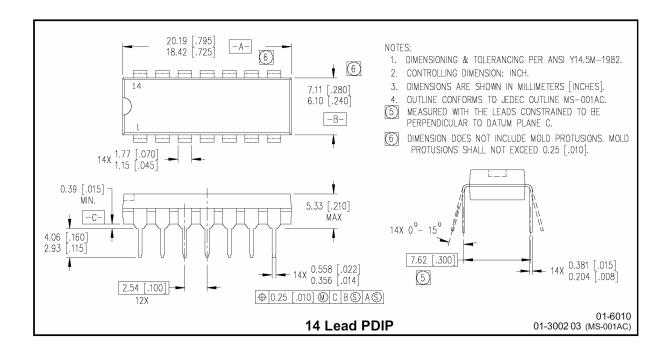

If CT is pulled down below VCTSD (approximately 1/6 of Vcc) by an external circuit, CT is not able to charge up and oscillation stops. HO1 and HO2 outputs are held low. LO1 and LO2 outputs remain high while VCT remains below V_{CT} enabling the bootstrap capacitors to charge. This state remains until the CT input is released and oscillation can resume.

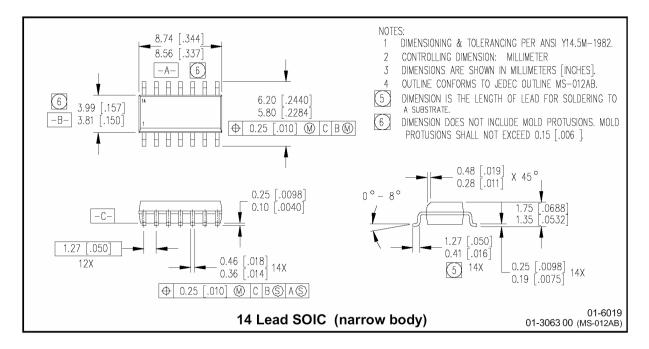
Latched Shutdown


When the SD pin is brought above 2 V, the IC goes into fault mode and all outputs are low. V_{CC} has to be recycled below V_{CCUV} to restart. The SD pin can be used for over-current or over-voltage protection using appropriate external circuitry.

> © 2016 International Rectifier April 27, 2016

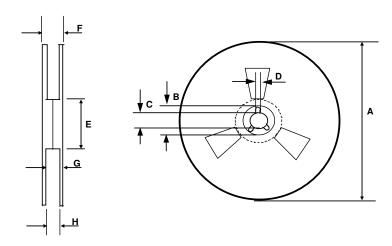
Deadtime Waveform




Rise and Fall Time Waveform

15

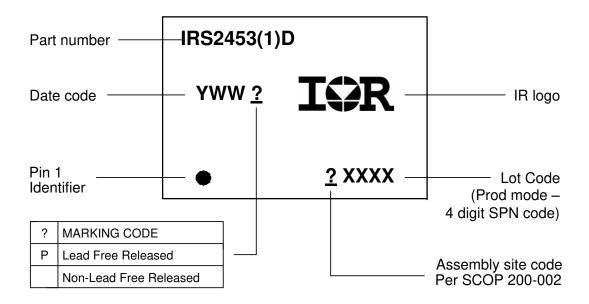
Package Details



Tape and Reel Details

CARRIER TAPE DIMENSION FOR 14SOICN

	Me	tric	Imp	erial
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	15.70	16.30	0.618	0.641
D	7.40	7.60	0.291	0.299
E	6.40	6.60	0.252	0.260
F	9.40	9.60	0.370	0.378
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062



REEL DIMENSIONS FOR 14SOICN

	Metric		ic Impe		Imperial	
Code	Min	Max	Min	Max		
Α	329.60	330.25	12.976	13.001		
В	20.95	21.45	0.824	0.844		
С	12.80	13.20	0.503	0.519		
D	1.95	2.45	0.767	0.096		
E	98.00	102.00	3.858	4.015		
F	n/a	22.40	n/a	0.881		
G	18.50	21.10	0.728	0.830		
H	16.40	18.40	0.645	0.724		

Part Marking Information

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

101N Sepulveda Blvd., El Segundo, California 90245 Tel: (310) 252-7105