mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IRS2538DSPBF

Magnetic Replacement Ballast IC

Features

- Ballast control plus half-bridge driver in one IC
- Single-stage topology (no PFC stage required)
- High PF and low THD
- Preheat, ignition and running lamp modes
- Closed-loop lamp current control
- Half-bridge NZVS protection
- Adaptive dead-time
- Lamp insert auto-restart
- Internal bootstrap MOSFET
- Micro-power start-up current
- 15.6V internal zener clamp on VCC
- Excellent ESD and latch immunity
- RoHS compliant
- 8-pin SO8 package

Applications

- Magnetic replacement electronic ballast
- Low cost electronic ballast

Description

This IC takes full advantage of IR's patented ballast and high-voltage technologies to realize a simple, highperformance magnetic ballast replacement solution. The IC includes a novel single-stage circuit topology and control method to achieve high power factor and low THD without a PFC stage or any electrolytic capacitors. A single high-voltage pin senses the halfbridge voltage to perform necessary protection functions. Closed-loop control of the lamp current provides constant lamp brightness over a wide line input voltage range. Combining these high-voltage control algorithms in a single 8-pin IC results in a large reduction in component count, an increase in manufacturability and reliability, a reduced design cycle time. while maintaining high ballast system performance.

Package Options

Ordering Information

Base Part Number	Package Type	Standard Pack		Orderable Part Number	
Dase Fait Number	Fackage Type	Form	Quantity		
IRS2538DSPBF	SO8N	Tape and Reel	2500	IRS2538DSTRPBF	

Functional Block Diagram

Timing Diagram

Qualification Information[†]

Qualification Level		(pe	Industrial'' (per JEDEC JESD 47E)			
		Comments: This family of ICs has passed JEDEC's Industrial qualification. IR's Consumer qualification level is				
		granted by extension	of the higher Industrial level.			
Moisture Sensitivity Level		SOIC8N	MSL2 ^{†††} (per IPC/JEDEC J-STD-020C)			
			Class A			
FOD	Machine Model	(per JEDEC standard EIA/JESD22-A115-A)				
ESD	Liuman Bady Madal		Class IC			
	Human Body Model	(per EIA/JEDEC standard JESD22-A114-B)				
IC Latch-Up Test		Class I, Level A				
		(per JESD78A)				
RoHS Compliant			Yes			

+ Qualification standards can be found at International Rectifier's web site http://www.irf.com/

++ Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.

+++ Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM, all currents are defined positive into any pin. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
VB	High-Side Floating Supply Voltage	-0.3	625	
Vs	High-Side Floating Supply Offset Voltage	VB - 25	VB + 0.3	
VHO	High-Side Floating Output Voltage	VS - 0.3	VB + 0.3	V
VLO	Low-Side Output Voltage	-0.3	VCC + 0.3	v
Vvco	VCO Input Voltage	-0.3	6	
VFB	FB Input Voltage	-0.3	VCC + 0.3	
ICC	Supply Current [†]		20	
ΙΟΜΑΧ	Maximum allowable current at LO, HO and PFC due to external power transistor Miller effect.	-500	500	mA
dV₅⁄dt	Allowable VS Pin Voltage Slew Rate	-50	50	V/ns
PD	Maximum Power Dissipation @ TA \leq +25°C, 8-Pin SOIC		0.625	W
R⊕JA	Thermal Resistance, Junction to Ambient, 8-Pin SOIC		128	ºC/W
TJ	Junction Temperature	-55	150	
TS	Storage Temperature	-55	150	°C
TL	Lead Temperature (Soldering, 10 seconds)		300	

+: This IC contains a voltage clamp structure between the chip VCC and COM which has a nominal breakdown voltage of 15.6V. This supply pin should not be driven by a DC, low impedance power source greater than the VCLAMP specified in the Electrical Characteristics section.

Recommended Operating Conditions

For proper operation the device should be used within the recommended conditions.

Symbol	Definition	Min.	Max.	Units
VBS	High-Side Floating Supply Voltage	VCC - 0.7	VCLAMP	V
Vs	Steady State High-Side Floating Supply Offset Voltage	-3.0 ^{††}	600	V
VCC	Supply Voltage	VCCUV+ + 0.1V	VCLAMP	V
ICC	Supply Current	† ††	5	mA
TJ	Junction Temperature	-40	125	°C

th: Care should be taken to avoid output switching conditions where the VS node rings below COM by more than 5V.

+++: Enough current should be supplied to the V_{CC} pin of the IC to keep the internal 15.6V zener diode regulating at its voltage, VCLAMP.

Electrical Characteristics

VCC=VBS=14V, VS=0V and TA = 25°C unless otherwise specified. The output voltage and current (VO and IO) parameters are referenced to COM and are applicable to the respective HO and LO output pins.

Symbol	Definition		Тур	Max	Units	Test Conditions		
Low Voltage Supply Characteristics								
VCLAMP	V _{CC} Zener Clamp Voltage	14.5	15.5	16.5		$I_{CC} = 10mA$		
Vccuv+	Rising V _{CC} UVLO Threshold	11.2	11.8	12.3	V			
Vccuv-	Falling V _{CC} UVLO Threshold	8.5	9.0	9.5	v			
Vccuvhys	V _{CC} UVLO Hysteresis		2.8					
laccuv	Micro-power Startup V _{CC} Supply Current			125	μA	$VCC = V_{CCUV+}$ - 500mV		
I CCfmin	f _{MIN} V _{CC} Supply Current		2.2		m۸	VCO ≥ 5V		
I _{CCfmax}	f _{MAX} V _{CC} Supply Current		3.2			VCO = 0V		
IQCCFLT	Fault Mode V _{CC} Supply Current 300		μA	$\begin{aligned} \text{MODE} &= \text{FAULT}, \\ \text{V}_{\text{CC}} &= \text{V}_{\text{CCUV}+} \end{aligned}$				
Floating S	upply Characteristics							
IQBS	Quiescent V _{BS} Supply Current		28		μA			
V _{BSUV+}	Rising V _{BS} Supply UVLO Threshold		7.2		V			
VBSUV-	Falling V _{BS} Supply UVLO Threshold		6.8		v			
ILK	Offset Supply Leakage Current			170	μA	$V_B = V_S = 600V$		
Ballast Co	ntrol Characteristics							
fmin	Minimum Output Frequency	17.4	18.3	19.4	kU-	VCO ≥ 5V		
fMAX	Maximum Output Frequency	80.9	85.6	91.3	KIIZ	VCO = 0V		
d	Duty Cycle		50		%			
DT _{MIN}	Minimum Output Dead-time (HO or LO)	0.48						
DT _{MAX}	Maximum Output Dead-time (HO or LO)		1.35		μs			
VLOSD+	LO Pin Shutdown Threshold		13.3					
VLOSD-	LO Pin Re-start Threshold		11.1		V			
VLORSTHYS	LO Pin Restart Hysteresis		2.2		v			
Vzvsth	VS Non-ZVS Detection Threshold		4.6			LO = HIGH		

Electrical Characteristics

VCC=VBS=14V, VS=0V and TA = 25°C unless otherwise specified. The output voltage and current (VO and IO) parameters are referenced to COM and are applicable to the respective HO and LO output pins.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions		
PREHEAT Mode Characteristics								
Три	Dubut		2.0			f _{Line} = 60Hz, GBD		
PH	Preneat Time		2.4		sec	$f_{Line} = 50Hz, GBD$		
IGNITION Mode Characteristics								
VLOIGN+	LO Pin Ignition Voltage Threshold		VCC		V	MODE = RE-IGN		
RUN Mode	e Characteristics							
VFBREG+	FB Pin Regulation Threshold	0.93	1.0	1.09	V			
VIGNDET+	FB Pin Ignition Detection Threshold	0.1	0.2	0.3	v			
VCO Control Characteristics								
Ivco	VCO Charging Current	9.8	10.8	11.7	Δ	MODE = IGN		
I _{VCO_ZVS}	ZVS VCO Discharging Current		400		uA			

Electrical Characteristics

VCC=VBS=14V, VS=0V and TA = 25°C unless otherwise specified. The output voltage and current (VO and IO) parameters are referenced to COM and are applicable to the respective HO and LO output pins.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions		
Gate Driver Output Characteristics (HO and LO)								
Voh_lo1	LO Leading Edge High-Level Output Voltage		12.6					
Voh_lo2	LO Steady State High-Level Output Voltage		10.8		V	I _O = 0A		
Vон_но	HO High-Level Output Voltage		VBS		v			
V _{OL}	Low-Level Output Voltage		COM					
t _R	Output Rise Time		120		ne	CHO=1nF,		
tF	Output Fall Time		50		115	CLO=1nF		
I _{O+}	Output Source Current		180		m ^			
Io.	Output Sink Current		260		ША			
Bootstrap FET Characteristics								
VB_ON	VB when the bootstrap FET is on		14.0		V	LO = 'HIGH'		
IB_CAP	CAP VB source current when FET is on		23.0			$CBS = 0.1 \mu F$		
IB_10V	VB source current when FET is on		4.2		ШA	VB = 10V		

IRS2538DSPBF

Pin Assignments and Definitions

Name	No.	Description			
VCC	1	Logic and internal gate drive supply voltage			
СОМ	2	IC power and signal ground			
FB	3	Lamp current feedback input			
VCO	4	Voltage-controlled oscillator (VCO) input			
LO	5	Half-bridge low-side gate driver output			
VS	6	High voltage floating supply return and half-bridge sensing input			
НО	7	High-side gate driver output			
VB	8	High-side gate driver floating supply			

State Diagram

Package Details: SO8N

Tape and Reel Details: SO8N

CARRIER TAPE DIMENSION FOR 8SOICN

	Metric		Imp	erial
Code	Min	Max	Min	Max
A	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	11.70	12.30	0.46	0.484
D	5.45	5.55	0.214	0.218
E	6.30	6.50	0.248	0.255
F	5.10	5.30	0.200	0.208
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062

REEL DIMENSIONS FOR 8SOICN

	Metric		Imperial	
Code	Min	Max	Min	Max
A	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

Part Marking Information: SO8N

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

> WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105