imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IRU1117-18(PbF)

800mA LOW DROPOUT POSITIVE FIXED 1.8V REGULATOR

DESCRIPTION

The IRU1117-18 is a low dropout three-terminal fixed output regulator with minimum of 800mA output current capability. This product is specifically designed to provide well regulated supply for low voltage IC applications as well as generating clock supply for PC applications. The IRU1117-18 is guaranteed to have <1.2V dropout at full load current making it ideal to provide well regulated with 3.8V input supply. The IRU1117-18 is specifically designed to be stable with low cost aluminum capacitors while maintaining stability with low ESR tantalum caps.

FEATURES

- Guaranteed < 1.2V Dropout at 800mA Load Current
- Fast Transient Response
- 1% Voltage Reference Initial Accuracy
- Built-In Thermal Shutdown
- Available in SOT-223, D-Pak, Ultra Thin-Pak[™] and 8-Pin SOIC Surface-Mount Packages

APPLICATIONS

- Low Voltage IC Supply Applications
- PC Clock Supply Voltage

TYPICAL APPLICATION

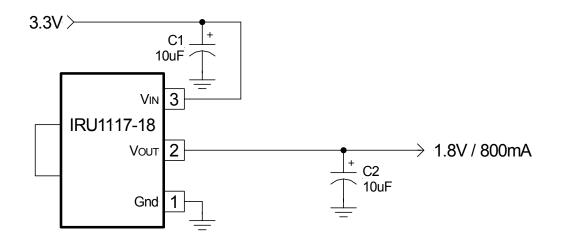
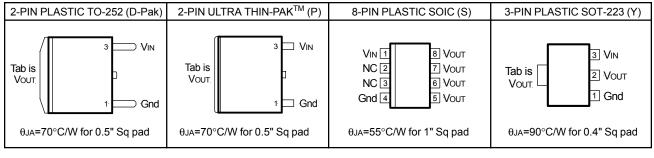


Figure 1 - Typical set-up of the IRU1117-18 in a 3.3V to 1.8V regulator application.

PACKAGE ORDER INFORMATION

Basic Part (Non-Lead Free)

Тյ (°С)	2-PIN PLASTIC	2-PIN PLASTIC	8-PIN PLASTIC	3-PIN PLASTIC
	TO-252 (D-Pak)	Ultra Thin-Pak™ (P)	SOIC (S)	SOT-223 (Y)
0 To 125	IRU1117-18CD	IRU1117-18CP	IRU1117-18CS	IRU1117-18CY


Leadfree Part

TJ (°C)	2-PIN PLASTIC	2-PIN PLASTIC	8-PIN PLASTIC	3-PIN PLASTIC
	TO-252 (D-Pak)	Ultra Thin-Pak™ (P)	SOIC (S)	SOT-223 (Y)
0 To 125	Not available	Not available	RU1117-18CSPbF	Not available

ABSOLUTE MAXIMUM RATINGS

Input Voltage (VIN)	7V
Power Dissipation	Internally Limited
Storage Temperature Range	-65°C To 150°C
Operating Junction Temperature Range	0°C To 125°C

PACKAGE INFORMATION

ELECTRICAL SPECIFICATIONS

Unless otherwise specified, these specifications apply over $C_{IN}=1\mu F$, $V_{IN}=5V$, $C_{OUT}=10\mu F$, and $T_J=0$ to $125^{\circ}C$. Typical values refer to $T_J=25^{\circ}C$.

PARAMETER	SYM	TEST CONDITION	MIN	TYP	MAX	UNITS
Output Voltage	Vo	lo=10mA, TJ=25°C	1.782	1.800	1.818	V
		lo=10mA	1.764	1.800	1.896	
Line Regulation		lo=10mA, 4.75V <v<sub>IN<7V</v<sub>			7	mV
Load Regulation (Note 1)		10mA <lo<800ma< td=""><td></td><td></td><td>17</td><td>mV</td></lo<800ma<>			17	mV
Dropout Voltage (Note 2)		lo=1A		1.2	1.3	V
		lo=800mA		1.1	1.2	
Current Limit		ΔVo=100mV	1.1			A
Thermal Regulation		30ms Pulse, Io=800mA		0.01		%/W
Ripple Rejection		f=120Hz, Co=25µF Tantalum,				
		lo=0.5A		70		dB
Temperature Stability		lo=10mA		0.5		%
Long Term Stability		TJ=125°C, 1000Hrs		0.3		%
RMS Output Noise		TJ=25°C, 10Hz <f<10khz< td=""><td></td><td>0.003</td><td></td><td>%Vo</td></f<10khz<>		0.003		%Vo

Note 1: Low duty cycle pulse testing with Kelvin connections is required in order to maintain accurate data.

Note 2: Dropout voltage is defined as the minimum differential voltage between V_{IN} and V_{OUT} required to maintain regulation at V_{OUT}. It is measured when the output voltage drops 1% below its nominal value.

PIN DESCRIPTIONS

PIN#	PIN SYMBOL	PIN DESCRIPTION
1	Gnd	Ground pin. This pin must be connected to ground plane using a low inductance short connection.
2	Vout	The output of the regulator. This pin is also connected to the tab of the package. An output capacitor must be connected to this pin to insure stability of the regulator.
3	Vin	Input pin of the regulator. Typically a large storage capacitor is connected from this pin to ground to insure that the input voltage does not sag below the minimum dropout voltage during the load transient response. This pin must always be $1.3V$ higher than V _{OUT} in order for the device to regulate properly.

BLOCK DIAGRAM

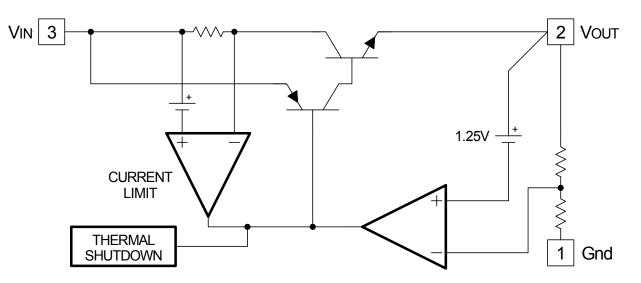
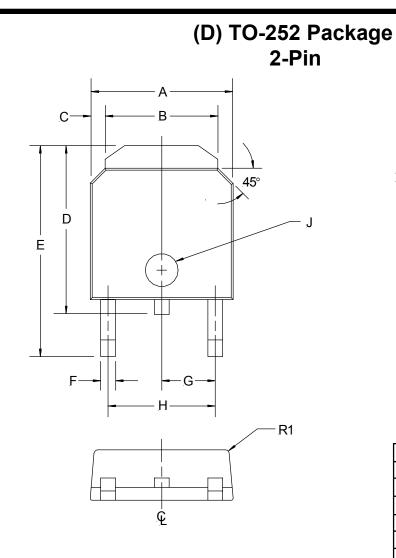
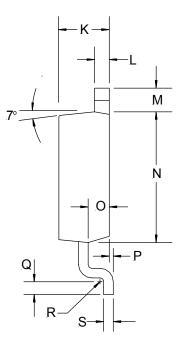
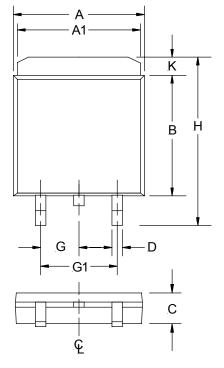
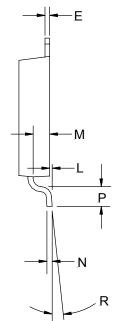




Figure 2 - Simplified block diagram of the IRU1117-18.

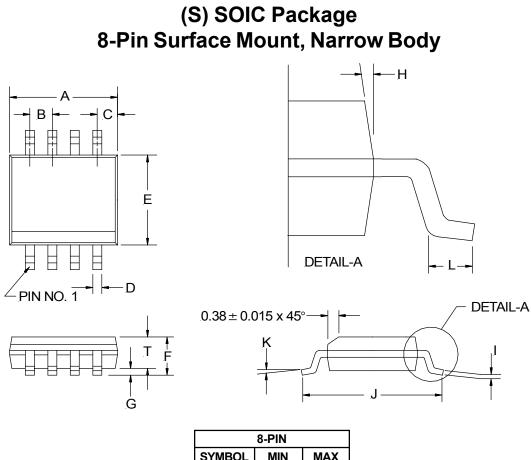
IRU1117-18(PbF)



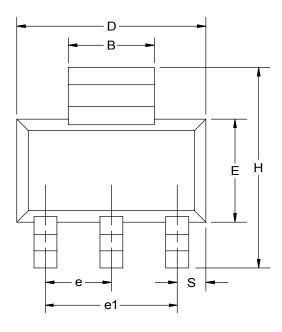


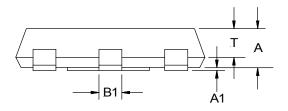

SYMBOL	MIN MAX		
Α	6.477	6.731	
В	5.004	5.207	
С	0.686	0.838	
D	7.417	8.179	
E	9.703	10.084	
F	0.635	0.889	
G	2.286	BSC	
Н	4.521	4.623	
J	Ø1.52	Ø1.62	
K	2.184	2.388	
L	0.762	0.864	
М	1.016 1.11		
N	5.969	6.223	
0	1.016 1.118		
Р	0	0.102	
Q	0.534	0.686	
R	R0.31 TYP		
R1	R0.51 TYP		
S	0.428 0.588		

NOTE: ALL MEASUREMENTS ARE IN MILLIMETERS.



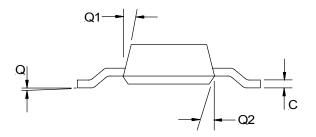
SYMBOL	MIN MAX		
Α	5.91	6.17	
A1	5.54	5.79	
В	6.02	6.27	
С	1.70	2.03	
D	0.63	0.79	
E	0.17	0.33	
G	2.16	2.41	
G1	4.45	4.70	
Н	9.42	9.68	
K	0.76	1.27	
L	0.02	0.13	
М	0.89	1.14	
N	0.25	0.25	
Р	0.94	1.19	
R	2°	6°	
U	2.92	3.30	
V	5.08 NOM		

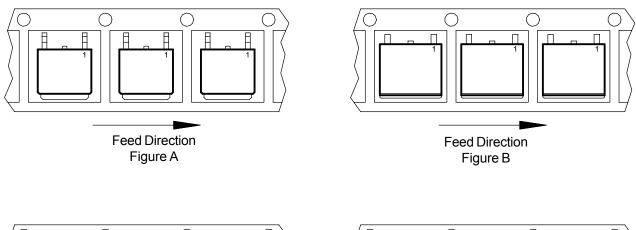

NOTE: ALL MEASUREMENTS ARE IN MILLIMETERS.

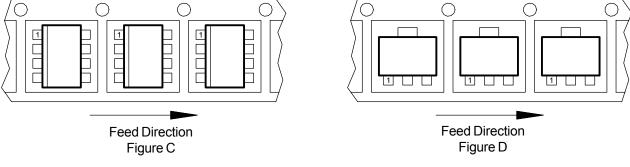


o-Pin						
SYMBOL	MIN MAX					
А	4.80	4.98				
В	1.27 BSC					
С	0.53	REF				
D	0.36	0.46				
E	3.81	3.99				
F	1.52	1.72				
G	0.10	0.25				
Н	7° E	BSC				
I	0.19	0.25				
J	5.80	6.20				
К	0°	8°				
L	0.41 1.27					
Т	1.37 1.57					

NOTE: ALL MEASUREMENTS ARE IN MILLIMETERS.


(Y) SOT-223 Package 3-Pin


SYMBOL	MIN	MAX
А	1.498	1.702
A1	0.02	0.11
В	2.895	3.15
B1	0.637	0.85
С	0.239	0.381
D	6.299	6.706
E	3.30	3.708
е	2.209	2.953
e1	4.496	4.699
Н	6.70	7.30
Q	0°	10°
Q1	7 °	16°
Q2	7 °	16°
S	0.838	1.05
Т	1.092	1.30


NOTE: ALL MEASUREMENTS ARE IN MILLIMETERS.

PACKAGE SHIPMENT METHOD

PKG	PACKAGE	PIN	PARTS	PARTS	T&R
DESIG	DESCRIPTION	COUNT	PER TUBE	PER REEL	Orientation
D	TO-252, (D-Pak)	2	75	2500	Fig A
Р	Ultra Thin-Pak™	2	75	2500	Fig B
S	SOIC, Narrow Body	8	95	2500	Fig C
Y	SOT-223	3	80	2500	Fig D

International **tor** Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information Data and specifications subject to change without notice. 8/18/2005