: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

DUAL SYNCHRONOUS PWM CONTROLLER CIRCUITRY AND LDO CONTROLLER PRELIMINARY DATA SHEET

FEATURES

- Dual Synchronous Controller in 16-Pin Package with 180° out-of-phase operation
- LDO Controller with 40 mA drive
- Configured as 2-Independent PWM Controller
- Flexible, Same or Separate Supply Operation
- Operation from 4 V to 25 V Input
- Internal 200 KHz Oscillator
- Soft-Start controls all outputs
- Fixed Frequency Voltage Mode
- 500 mA Peak Output Drive Capability
- Programmable Outputs

DESCRIPTION

The IRU3048 IC combines a Dual synchronous Buck controller and a linear regulator controller, providing a cost-effective, high performance and flexible solution for multi-output applications. The Dual synchronous controller is configured as 2 -independent PWM controller. IRU3048 provides a separate adjustable output by driving a switch as a linear regulator. This device features an internal 200 KHz oscillator, under-voltage lockout for all input supplies, an external programmable soft start function as well as output under-voltage detection that latches off the device when an output short is detected.

APPLICATIONS

- DDR Memory Source Sink Vtt Application
- Graphic Card
- Hard Disk Drive
- Power supplies requiring multiple outputs

TYPICAL APPLICATION

Figure 1 - Typical application of IRU3048 configured as 2-independent converter.

PACKAGE ORDER INFORMATION

$\mathrm{T}_{\mathbf{A}}\left({ }^{\circ} \mathbf{C}\right)$	DEVICE	PACKAGE
0 To 70	IRU3048CF	16-Pin TSSOP (F)
0 To 70	IRU3048CS	16-Pin SOIC NB (S)

ABSOLUTE MAXIMUM RATINGS

Vcc Supply Voltage
$\mathrm{VcH} 1=\mathrm{VcH} 2$ Supply Voltage
30 V (not rated for inductive load)
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ To $150^{\circ} \mathrm{C}$
Operating Junction Temperature Range
$0^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

PACKAGE INFORMATION

16-PIN PLASTIC TSSOP (F)	16-PIN PLASTIC SOIC NB (S)
$\theta J A=90^{\circ} \mathrm{C} / \mathrm{W}$	$\theta \mathrm{JA}=85^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL SPECIFICATIONS

Unless otherwise specified, these specifications apply over $\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{VcH} 1=\mathrm{VcH} 2=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$. Typical values refer to $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Low duty cycle pulse testing is used which keeps junction and case temperatures equal to the ambient temperature.

PARAMETER	SYM	TEST CONDITION	MIN	TYP	MAX	UNITS
Reference Voltage Fb Voltage	$V_{\text {Fb }}$		1.225	1.250	1.275	V
Fb Voltage Line Regulation	Lreg	$5<\mathrm{Vcc}<12$		0.2		\%
UVLO UVLO Threshold - Vcc	UVLOVcc	Supply Ramping Up		4.2		V
UVLO Hysteresis - Vcc				0.25		V
UVLO Threshold - VcH1	UVLOVcH1	Supply Ramping Up		3.5		V
UVLO Hysteresis - VcH1				0.2		V
UVLO Threshold - VcH2	UVLOVcH2	Supply Ramping Up		3.5		V
UVLO Hysteresis - VcH2				0.2		V
UVLO Threshold - Fb	UVLOFB	Fb Ramping Down		0.6		V
UVLO Hysteresis - Fb				0.1		V
Supply Current Vcc Dynamic Supply Current	Dyn Icc	Freq=200KHz, $\mathrm{C}=1500 \mathrm{pF}$		5		mA
VcH1 Dynamic Supply Current	Dyn lch1	Freq=200KHz, C $=1500 \mathrm{pF}$		7		mA
VcH2 Dynamic Supply Current	Dyn lcH2	Freq=200KHz, C $=1500 \mathrm{pF}$		7		mA
Vcc Static Supply Current	Icco	SS=0V		3.5		mA
VcH1 Static Supply Current	$\mathrm{lcH1Q}$	SS=0V		2		mA
VcH 2 Static Supply Current	IcH2Q	SS=0V		2		mA
Soft-Start Section Charge Current	SSib	SS=0V	15	25	30	$\mu \mathrm{A}$

PARAMETER	SYM	TEST CONDITION	MIN	TYP	MAX	UNITS
Error Amp						
Fb Voltage Input Bias Current	IFB1	SS=3V		-0.1		$\mu \mathrm{A}$
Fb Voltage Input Bias Current	IfB2	SS=0V		-64		$\mu \mathrm{A}$
Transconductance 1	$\mathrm{gm}_{\mathrm{m} 1}$			400		$\mu \mathrm{mho}$
Transconductance 2	gm_{m}			600		$\mu \mathrm{mho}$
Oscillator						
Frequency	Freq		180	200	220	KHz
Ramp Amplitude	VRamp			1.25		VPP
Output Drivers						
Rise Time	Tr	$\mathrm{C}_{\mathrm{L}}=1500 \mathrm{pF}$		35	100	ns
Fall Time	Tf	$\mathrm{C}_{\mathrm{L}=1500 \mathrm{pF}}$		50	100	ns
Dead Band Time	Tов		50	150	250	ns
Max Duty Cycle	Ton	$\mathrm{Fb}=1 \mathrm{~V}$, Freq= 200 KHz	85	90		\%
Min Duty Cycle	Toff	$\mathrm{Fb}=1.5 \mathrm{~V}$	0	0		\%
LDO Controller						
Drive Current	ILDo		30	45		mA
Fb Voltage	$\mathrm{V}_{\text {FbLDO }}$		1.225	1.25	1.275	V
Input Bias Current	ILDO(BAAS)			0.5	2	$\mu \mathrm{A}$

PIN DESCRIPTIONS

PIN\#	PIN SYMBOL	PIN DESCRIPTION
1	Gnd	Ground pin.
$\begin{gathered} \hline 2 \\ 16 \end{gathered}$	$\begin{aligned} & \hline \mathrm{Fb} 2 \\ & \mathrm{Fb} 1 \end{aligned}$	Inverting inputs to the error amplifiers. These pins work as feedback inputs for each channel, and are connected directly to the output of the switching regulator via a resistor divider to set the output voltages.
3	Comp1 Comp2	Compensation pins for the error amplifiers.
$\begin{gathered} \hline 5 \\ 12 \end{gathered}$	VcH 2 VcH1	Supply voltage for the high side output drivers. These are connected to voltages that must be at least 4 V higher than their bus voltages (assuming 5 V threshold MOSFET). A minimum of $1 \mu \mathrm{~F}$ high frequency capacitor must be connected from these pins to PGnd pin to provide peak drive current capability.
$\begin{gathered} \hline 6 \\ 11 \end{gathered}$	HDrv2 HDrv1	Output driver for the high side power MOSFET. Connect a diode, such as BAT54 or 1N4148, from these pins to ground for the application when the inductor current goes negative (Source/Sink), soft-start at no load and for the fast load transient from full load to no load.
7	LDrv2	Output driver for the synchronous power MOSFET.
10	LDrv1	
8	PGnd	This pin serves as the separate ground for MOSFET's driver and should be connected to the system's ground plane.
9	Vcc	Supply voltage for the internal blocks of the IC.
13	Vоит3	Driver signal for the LDO's external transistor.
14	Fb3	LDO's feedback pin, connected to a resistor divider to set the output voltage of LDO.
15	SS	Soft-Start pin. The converter can be shutdown by pulling this pin below 0.5 V .

Figure 2 - Block diagram of the IRU3048.

THEORY OF OPERATION

Introduction

The IRU3048 is designed for multi-outputs applications. It includes two synchronous buck controllers and a linear regulator controller. The two synchronous controller operates with fixed frequency voltage mode and is configured as two independent controllers. The timing of the IC is provided through an internal oscillator circuit. These are two out of phase oscillators.

Soft-Start

The IRU3048 has a programmable soft start to control the output voltage rise and limit the current surge at the start-up. To ensure correct start-up, the soft-start sequence initiates when the $\mathrm{Vcc}, \mathrm{VcH} 1$ and VcH 2 rise above their threshold and generates the Power On Reset (POR) signal. Soft-start function operates by sourcing an internal current to charge an external capacitor to about 3V. Initially, the soft-start function clamps the E/ A's output of the PWM converter. As the charging voltage of the external capacitor ramps up, the PWM signals increase from zero to the point the feedback loop takes control.

Out of Phase Operation

The IRU3048 drives its two output stages 180° out of
phase. In application with single input voltage, the out of phase operation reduces the input ripple current. This results in much smaller RMS current in the input capacitor and reduction of input capacitors.

Shutdown

The converter can be shutdown by pulling the soft-start pin below 0.5 V . This can be easily done by using an external small signal transistor. During shutdown the MOSFET drivers and the LDO controller turn off.

Short-Circuit Protection

The outputs are protected against the short circuit. The IRU3048 protects the circuit for shorted output by sensing the output voltages. The IRU3048 shuts down the PWM signals and LDO controller, when the output voltages drops below the set values.

Under-Voltage Lockout

The under-voltage lockout circuit assures that the MOSFET driver outputs and LDO controller remain in the off state whenever the supply voltages drop below set parameters. Normal operation resumes once the supply voltages rise above the set values.

APPLICATION INFORMATION

Design Example:

The following example is a typical application for IRU3048 in current sharing mode. The schematic is Figure 9 on page 12.

$$
\begin{array}{ll}
\text { For Switcher } & \text { For Linear Regulator } \\
\mathrm{V}_{\text {IN1 } 1}=12 \mathrm{~V} & \text { VIN3 }=3.3 \mathrm{~V} \\
\text { Vout1 }=3.3 \mathrm{~V} & \text { Vоuт3 }=2.5 \mathrm{~V} \\
\text { lout1 }=4 \mathrm{~A} & \text { lout3 }=2 \mathrm{~A} \\
\mathrm{~V}_{\text {IN2 } 2}=5 \mathrm{~V} & \\
\text { Vout2 }=1.8 \mathrm{~V} & \\
\text { lout2 }=4 \mathrm{~A} & \\
\Delta \mathrm{~V} \text { out }=75 \mathrm{mV} & \\
\mathrm{fs}_{\mathrm{s}}=200 \mathrm{KHz} &
\end{array}
$$

PWM Section

Output Voltage Programming

Output voltage is programmed by reference voltage and external voltage divider. The Fb1 pin is the inverting input of the error amplifier, which is internally referenced to 1.25 V . The divider is ratioed to provide 1.25 V at the Fb1 pin when the output is at its desired value. The output voltage is defined by using the following equation:

$$
\begin{equation*}
V_{\text {OUT1 }}=V_{\text {REF }} \times\left(1+\frac{R_{6}}{R_{8}}\right) \tag{1}
\end{equation*}
$$

When an external resistor divider is connected to the output as shown in Figure 3.

Figure 3 - Typical application of the IRU3048 for programming the output voltage.

Equation (1) can be rewritten as:

$$
R_{6}=R_{8} \times\left(\frac{V_{\text {out } 1}}{V_{\text {REF }}}-1\right)
$$

Will result to:

$V_{\text {out } 1=3}=3 \mathrm{~V}$	Vout $^{2}=1.8 \mathrm{~V}$
$\mathrm{~V}_{\text {REF }}=1.25 \mathrm{~V}$	$\mathrm{~V}_{\text {REF }}=1.25 \mathrm{~V}$
$\mathrm{R}_{8}=1 \mathrm{~K}, \mathrm{R}_{6}=1.64 \mathrm{~K}$	$\mathrm{R}_{15=1 \mathrm{~K}} \mathrm{~K}, \mathrm{R}_{14}=442 \Omega$

If the high value feedback resistors are used, the input bias current of the Fb pin could cause a slight increase in output voltage. The output voltage set point can be more accurate by using precision resistor.

Soft-Start Programming

The soft-start timing can be programmed by selecting the soft start capacitance value. The start up time of the converter can be calculated by using:

$$
\begin{equation*}
\text { tstart }=75 \times \text { Css } \quad(\mathrm{ms}) \tag{2}
\end{equation*}
$$

Where:
Css is the soft-start capacitor ($\mu \mathrm{F}$)
For a start-up time of 7.5 ms , the soft-start capacitor will be $0.1 \mu \mathrm{~F}$. Choose a ceramic capacitor at $0.1 \mu \mathrm{~F}$.

Boost Supply Vc

To drive the high-side switch it is necessary to supply a gate voltage at least 4 V greater than the bus voltage. This is achieved by using a charge pump configuration as shown in Figure 9. The capacitor is charged up to approximately twice the bus voltage. A capacitor in the range of $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ is generally adequate for most applications.

Input Capacitor selection

The input filter capacitor should be based on how much ripple the supply can tolerate on the DC input line. The ripple current generated during the on time of control MOSFET should be provided by input capacitor. The RMS value of this ripple is expressed by:
lims $=$ lout $\sqrt{\mathrm{D} \times(1-\mathrm{D})}$
Where:
D is the Duty Cycle, simply $\mathrm{D}=\mathrm{Vout} / \mathrm{Vin}_{\text {in }}$. lrms is the RMS value of the input capacitor current. lout is the output current for each channel.

For $\mathrm{V}_{1 \mathrm{~N} 1}=12 \mathrm{~V}$, louti $=4 \mathrm{~A}$ and $\mathrm{D} 1=0.275$
Results to: lems $1=1.78 \mathrm{~A}$
And for $\mathrm{V}_{\mathrm{IN} 2}=5 \mathrm{~V}$, lout $=4 \mathrm{~A}$ and $\mathrm{D} 2=0.36$
Results to: lrms2 $=1.92 \mathrm{~A}$
For higher efficiency, a low ESR capacitor is recommended.

For $\mathrm{V}_{\mathrm{iN} 1}=12 \mathrm{~V}$, choose one Poscap from Sanyo 16TPB47M ($16 \mathrm{~V}, 47 \mu \mathrm{~F}, 70 \mathrm{~m} \Omega, 1.4 \mathrm{~A}$)

For $\mathrm{V}_{1 \mathrm{~N} 2}=5 \mathrm{~V}$, choose one 6TPC150M ($6.3 \mathrm{~V}, 150 \mu \mathrm{~F}$, $40 \mathrm{~m} \Omega, 1.9 \mathrm{~A}$).

Output Capacitor Selection

The criteria to select the output capacitor is normally based on the value of the Effective Series Resistance (ESR). In general, the output capacitor must have low enough ESR to meet output ripple and load transient requirements, yet have high enough ESR to satisfy stability requirements. The ESR of the output capacitor is calculated by the following relationship:

$$
\begin{equation*}
\mathrm{ESR} \leq \frac{\Delta \mathrm{V}_{\mathrm{o}}}{\Delta \mathrm{lo}_{\mathrm{o}}} \tag{4}
\end{equation*}
$$

Where:
$\Delta \mathrm{V}_{\mathrm{o}}=$ Output Voltage Ripple
$\Delta l o=$ Output Current
$\Delta V_{o}=75 \mathrm{mV}$ and $\Delta l_{\mathrm{o}}=3 \mathrm{~A}$, results to: $E S R=25 \mathrm{~m} \Omega$
The Sanyo TPC series, PosCap capacitor is a good choice. The 6TPC150M $150 \mu \mathrm{~F}, 6.3 \mathrm{~V}$ has an ESR $40 \mathrm{~m} \Omega$. Selecting two of these capacitors in parallel for each output, results to an ESR of $\cong 20 \mathrm{~m} \Omega$ which achieves our low ESR goal.

The capacitor value must be high enough to absorb the inductor's ripple current. The larger the value of capacitor, the lower will be the output ripple voltage.

The resulting output ripple current is smaller then each channel ripple current due to the 180° phase shift. These currents cancel each other. The cancellation is not the maximum because of the different duty cycle for each channel.

Inductor Selection

The inductor is selected based on output power, operating frequency and efficiency requirements. Low inductor value causes large ripple current, resulting in the smaller size, but poor efficiency and high output noise. Generally, the selection of inductor value can be reduced to desired maximum ripple current in the inductor ((i); the optimum point is usually found between 20% and 50% ripple of the output current.

For the buck converter, the inductor value for desired operating ripple current can be determined using the following relation:

$$
\begin{align*}
& V_{\text {IN }}-V_{\text {OUT }}=L \times \frac{\Delta i}{\Delta t} ; \Delta t=D \times \frac{1}{f_{s}} ; D=\frac{V_{\text {OUT }}}{V_{\text {IN }}} \\
& L=\left(V_{\text {IN }}-V_{\text {OUT }}\right) \times \frac{V_{\text {OUT }}}{V_{\text {IN }} \times \Delta i \times f_{S}} \quad--(5) \tag{5}
\end{align*}
$$

Where:
$\mathrm{V}_{\mathbb{I}}=$ Max Input Voltage $\quad \Delta t=$ Turn On Time
Vout = Output Voltage $\quad D=$ Duty Cycle
$\Delta i=$ Inductor Ripple Current
$\mathrm{fs}=$ Switching Frequency

For $\Delta i_{1}=25 \%$ of l_{1}, we get $L_{1}=9.9 \mu H$
For $\Delta i_{2}=25 \%$ of l_{2}, we get: $L_{2}=5.7 \mu \mathrm{H}$
Panasonic provides a range of inductors in different values and low profile for large currents.

For L_{1} choose ETQP6F102HFA $(10.2 \mu \mathrm{H}, 4 \mathrm{~A})$
For L_{2} choose ELLATV6R8M $(6.8 \mu \mathrm{H}, 4 \mathrm{~A})$

Power MOSFET Selection

The selections criteria to meet power transfer requirements is based on maximum drain-source voltage ($\mathrm{V}_{\mathrm{Dss}}$), gate-source drive voltage (V Gs) , maximum output current, On-resistance RDs(ON) and thermal management.

The MOSFET must have a maximum operating voltage (Voss) exceeding the maximum input voltage (V_{IN}).

The gate drive requirement is almost the same for both MOSFETs. Caution should be taken with devices at very low V_{GS} to prevent undesired turn-on of the complementary MOSFET, which results a shoot-through current.

The total power dissipation for MOSFETs includes conduction and switching losses. For the Buck converter the average inductor current is equal to the DC load current. The conduction loss is defined as:

$$
\begin{aligned}
& \operatorname{Pcond}_{\text {(Upper }} \text { Switch) }=\hat{I}_{\text {LOAD }}^{2} \times \operatorname{RDS(ON)} \times \mathrm{D} \times \vartheta \\
& \operatorname{Pcond}\left(\text { Lower Switch) }=\hat{L}_{\text {LOAD }}^{2} \times \operatorname{RDS}(O N) \times(1-D) \times \vartheta\right. \\
& \vartheta=\operatorname{Rds}(\mathrm{on}) \text { Temperature Dependency }
\end{aligned}
$$

The total conduction loss is defined as:
Pcon(total) $=\mathrm{Pcon}($ UpperSwitch) $\vartheta+\mathrm{Pcon}($ Lower Switch) ϑ
The Rds(on) temperature dependency should be considered for the worst case operation. This is typically given in the MOSFET data sheet. Ensure that the conduction losses and switching losses do not exceed the package ratings or violate the overall thermal budget.

For this design, IRF7313 is a good choice. These devices provide low on-resistance in a compact SOIC 8Pin package.

The MOSFETs have the following data:
IRF7313
Voss $=30 \mathrm{~V}$
$\mathrm{l}=5.2 \mathrm{~A} @ 70^{\circ} \mathrm{C}$
$\mathrm{RdS}_{\mathrm{O}}^{\mathrm{ON})}=46 \mathrm{~m} \Omega$ @ $\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}$
$\vartheta=1.5$ for $150^{\circ} \mathrm{C}$ (Junction Temperature)

The total conduction losses for channel 1 is:

$$
P_{C o N} 1=1.1 \mathrm{~W}
$$

The total conduction losses for channel 2 is:

$$
\mathrm{Pcon}^{2}=1.1 \mathrm{~W}
$$

The control MOSFET contributes to the majority of the switching losses in synchronous Buck converter. The synchronous MOSFET turns on under zero-voltage condition, therefore the turn on losses for synchronous MOSFET can be neglected. With a linear approximation, the total switching loss can be expressed as:

Where:
Vos(off) $=$ Drain to Source Voltage at off time
tr = Rise Time
tf = Fall Time
T = Switching Period
ILOAD = Load Current

Figure 4 - Switching time waveforms.
From IRF7313 data sheet we obtain:
$\frac{\operatorname{IRF} 7313}{\mathrm{tr}=13 \mathrm{~ns}}$
$\mathrm{tf}=26 \mathrm{~ns}$

These values are taken under a certain condition test. For more detail please refer to the IRF7313 data sheet.

By using equation (6), we can calculate the switching losses.

$$
\begin{aligned}
& \mathrm{Psw} 1=187.2 \mathrm{~mW} \\
& \mathrm{Psw}_{2}=78 \mathrm{~mW}
\end{aligned}
$$

Feedback Compensation

The IRU3048 is a voltage mode controller; the control loop is a single voltage feedback path including error amplifier and error comparator. To achieve fast transient response and accurate output regulation, a compensation circuit is necessary. The goal of the compensation network is to provide a closed loop transfer function with the highest 0 dB crossing frequency and adequate phase margin (greater than 45°).

The output LC filter introduces a double pole, $-40 \mathrm{~dB} /$ decade gain slope above its corner resonant frequency, and a total phase lag of 180° (see Figure 5). The Resonant frequency of the LC filter is expressed as follows:

$$
\begin{equation*}
F L C=\frac{1}{2 \pi \sqrt{\text { LO } \times \text { Co }}} \tag{7}
\end{equation*}
$$

Figure 5 shows gain and phase of the LC filter. Since we already have 180° phase shift just from the output filter, the system risks being unstable.

Figure 5 - Gain and phase of LC filter.
The IRU3048's error amplifier is a differential-input transconductance amplifier. The output is available for DC gain control or AC phase compensation.

The E/A can be compensated with or without the use of local feedback. When operated without local feedback the transconductance properties of the E/A become evident and can be used to cancel one of the output filter poles. This will be accomplished with a series RC circuit from Comp1 pin to ground as shown in Figure 6.

The ESR zero of the LC filter expressed as follows:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{ESR}}=\frac{1}{2 \pi \times \mathrm{ESR} \times \mathrm{Co}} \tag{8}
\end{equation*}
$$

Figure 6 - Compensation network without local feedback and its asymptotic gain plot.

The transfer function (Ve / Vout) is given by:

$$
\begin{equation*}
H(s)=\left(g_{m} \times \frac{R_{8}}{R_{6}+R_{8}}\right) \times \frac{1+s R_{9} C_{18}}{s C_{18}} \tag{9}
\end{equation*}
$$

The (s) indicates that the transfer function varies as a function of frequency. This configuration introduces a gain and zero, expressed by:

$$
\begin{align*}
& |H(s)|=g_{m} \times \frac{R_{8}}{R_{6} \times R_{8}} \times R_{9} \\
& \mathrm{Fz}_{\mathrm{z}}=\frac{1}{2 \pi \times \mathrm{R}_{9} \times \mathrm{C}_{18}} \tag{11}
\end{align*}
$$

The gain is determined by the voltage divider and E/A's transconductance gain.

First select the desired zero-crossover frequency (Fo):
Foi $>$ FESR and Fo1 $\leq(1 / 5 \sim 1 / 10) \times$ fs
Use the following equation to calculate R4:

$$
\begin{equation*}
R_{9}=\frac{V_{\text {osc }}}{V_{I N 1}} \times \frac{F_{01} \times F_{\text {ESSR } 1}}{F_{L C 1_{1}}{ }^{2}} \times \frac{R_{8}+R_{6}}{R_{8}} \times \frac{1}{g_{m}} \tag{12}
\end{equation*}
$$

Where:
$\mathrm{V}_{\mathrm{IN} 1}=$ Maximum Input Voltage
Vosc = Oscillator Ramp Voltage
Fo1 = Crossover Frequency for the master E/A
$\mathrm{F}_{\text {ESR1 }}=$ Zero Frequency of the Output Capacitor
FLC1 = Resonant Frequency of Output Filter
gm = Error Amplifier Transconductance
R_{8} and $\mathrm{R}_{6}=$ Resistor Dividers for Output Voltage
Programming

For:

$\mathrm{V}_{\text {IN } 1}=12 \mathrm{~V}$	$\mathrm{~F}_{\mathrm{LC} 1}=2.8 \mathrm{KHz}$
$\mathrm{V}_{\text {osc }}=1.25 \mathrm{~V}$	$\mathrm{R}_{8}=1 \mathrm{~K}$
$\mathrm{~F}_{\mathrm{O} 1}=30 \mathrm{KHz}$	$\mathrm{R}_{6}=1.64 \mathrm{~K}$
$\mathrm{~F}_{\text {ESR1 }}=26.5 \mathrm{KHz}$	$\mathrm{gm}=600 \mu \mathrm{mho}$

This results to $\mathrm{R}_{9}=46.4 \mathrm{~K} \Omega$; Choose $\mathrm{R} 9=46.4 \mathrm{~K} \Omega$
To cancel one of the LC filter poles, place the zero before the LC filter resonant frequency pole:

$$
\begin{align*}
& \mathrm{Fz}_{\mathrm{z}} \cong 75 \% \mathrm{FLC} 1 \\
& \mathrm{Fz}_{\mathrm{z}} \cong 0.75 \times \frac{1}{2 \pi \sqrt{\mathrm{~L}_{3} \times \mathrm{Co}}} \tag{13}
\end{align*}
$$

For:
$L_{3}=10.2 \mu \mathrm{H}$
$\mathrm{Co}=300 \mu \mathrm{~F}$
$\mathrm{Fz}=2.1 \mathrm{KHz}$
$\mathrm{R}_{9}=46.4 \mathrm{~K} \Omega$
Using equations (11) and (13) to calculate C 9 , we get:

$$
\mathrm{C}_{9}=1630 \mathrm{pF} \text {; Choose } \mathrm{C}_{9}=1800 \mathrm{pF}
$$

Using equations (11),(12) and (13) for Ch2, where:

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{IN2} 2}=5 \mathrm{~V} & \mathrm{~F}_{\mathrm{LC} 2}=3.5 \mathrm{KHz} \\
\mathrm{~V}_{\text {osc }}=1.25 \mathrm{~V} & \mathrm{R}_{15}=1 \mathrm{~K} \\
\mathrm{Foz}_{\mathrm{o}}=30 \mathrm{KHz} & \mathrm{R}_{14}=442 \Omega \\
\mathrm{~F}_{\mathrm{ESR} 2}=26.5 \mathrm{KHz} & \mathrm{gm}=600 \mu \mathrm{hmo}
\end{array}
$$

We get:

$$
\begin{aligned}
& \mathrm{R}_{11}=38.9 \mathrm{~K} \Omega ; \text { Choose } \mathrm{R}_{11}=39.2 \mathrm{~K} \Omega \\
& \mathrm{C}_{19}=1554 \mathrm{pF} ; \text { Choose } \mathrm{C}_{19}=1800 \mathrm{pF}
\end{aligned}
$$

One more capacitor is sometimes added in parallel with C_{9} and R_{4}. This introduces one more pole which is mainly used to supress the switching noise. The additional pole is given by:

$$
\mathrm{FP}_{\mathrm{P}}=\frac{1}{2 \pi \times \mathrm{R}_{9} \times \frac{\mathrm{C}_{18} \times \mathrm{CPOLE}^{\mathrm{C}_{18}+\mathrm{C}_{\text {POLE }}}}{}}
$$

The pole sets to one half of switching frequency which results in the capacitor Cpole:

$$
\begin{aligned}
& \text { CPole }=\frac{1}{\pi \times R_{9} \times \mathrm{fs}-\frac{1}{\mathrm{C}_{18}}} \cong \frac{1}{\pi \times \mathrm{R}_{9} \times \mathrm{fs}} \\
& \text { For } \mathrm{F}_{\mathrm{P}} \ll \frac{\mathrm{fs}_{2}^{2}}{}
\end{aligned}
$$

For a general solution for unconditionally stability for any type of output capacitors, in a wide range of ESR values we should implement local feedback with a compensation network. The typically used compensation network for voltage-mode controller is shown in Figure 7.

Figure 7-Compensation network with local feedback and its asymptotic gain plot.

In such configuration, the transfer function is given by:

$$
\frac{V_{e}}{V_{\text {out }}}=\frac{1-g_{m} Z_{f}}{1+g_{m Z_{N}}}
$$

The error amplifier gain is independent of the transconductance under the following condition:

$$
\begin{equation*}
g_{m} Z_{t} \gg 1 \quad \text { and } \quad g_{m} Z_{N} \gg 1 \tag{14}
\end{equation*}
$$

By replacing $Z_{i N}$ and Z_{i} according to figure 7 , the transformer function can be expressed as:

$$
\mathrm{H}(\mathrm{~s})=\frac{1}{\mathrm{sR} \mathrm{R}_{6}\left(\mathrm{C}_{12}+\mathrm{C}_{11}\right)} \times \frac{\left(1+\mathrm{sR}_{7} \mathrm{C}_{11}\right) \times\left[1+\mathrm{s}_{10}\left(\mathrm{R}_{6}+\mathrm{R}_{8}\right)\right]}{\left[1+\mathrm{sR}_{7}\left(\frac{\mathrm{C}_{12} \mathrm{C}_{11}}{\mathrm{C}_{12}+\mathrm{C}_{11}}\right)\right] \times\left(1+\mathrm{sR}_{8} \mathrm{C}_{10}\right)}
$$

As known, transconductance amplifier has high impedance (current source) output, therefore, consider should be taken when loading the E/A output. It may exceed its source/sink output current capability, so that the amplifier will not be able to swing its output voltage over the necessary range.

The compensation network has three poles and two zeros and they are expressed as follows:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{P} 1}=0 \quad \mathrm{~F}_{\mathrm{P} 2}=\frac{1}{2 \pi \times \mathrm{R}_{8} \times \mathrm{C}_{10}} \\
& \mathrm{~F}_{\mathrm{P} 3}=\frac{1}{2 \pi \times \mathrm{R}_{7} \times\left(\frac{\mathrm{C}_{12} \times \mathrm{C}_{11}}{\mathrm{C}_{12}+\mathrm{C}_{11}}\right)} \cong \frac{1}{2 \pi \times \mathrm{R}_{7} \times \mathrm{C}_{12}} \\
& \mathrm{~F}_{\mathrm{Z} 1}=\frac{1}{2 \pi \times \mathrm{R}_{7} \times \mathrm{C}_{11}} \\
& \mathrm{~F}_{\mathrm{Z} 2}=\frac{1}{2 \pi \times \mathrm{C}_{10} \times\left(\mathrm{R}_{6}+\mathrm{R}_{8}\right)} \cong \frac{1}{2 \pi \times \mathrm{C}_{10} \times \mathrm{R}_{6}}
\end{aligned}
$$

Cross Over Frequency:
$\mathrm{F}_{\mathrm{O} 1}=\mathrm{R}_{7} \times \mathrm{C}_{10} \times \frac{\mathrm{V}_{\text {IN }}}{\mathrm{V}_{\text {OSC }}} \times \frac{1}{2 \pi \times \mathrm{Lo} \times \mathrm{Co}_{0}}$
Where:
Vin = Maximum Input Voltage
Vosc = Oscillator Ramp Voltage
Lo = Output Inductor
Co = Total Output Capacitors
The stability requirement will be satisfied by placing the poles and zeros of the compensation network according to following design rules. The consideration has been taken to satisfy condition 14 regarding transconductance error amplifier.

1) Select the crossover frequency:

Fo $<$ Fesr and Fo $\leq(1 / 10 \sim 1 / 6) \times$ fs
2) Select R_{7}, so that $R_{7} \gg \frac{2}{g m}$
3) Place first zero before LC's resonant frequency pole.
$\mathrm{F}_{\mathrm{Z} 1} \cong 75 \% \mathrm{FLC}$
$C_{11}=\frac{1}{2 \pi \times F_{z 1} \times R_{7}}$
4) Place third pole at the half of the switching frequency.
$\mathrm{F}_{\mathrm{P} 3}=\frac{\mathrm{f}}{2}$
$\mathrm{C}_{12}=\frac{1}{2 \pi \times \mathrm{R}_{7} \times \mathrm{F}_{\mathrm{P} 3}}$
$\mathrm{C}_{12}>50 \mathrm{pF}$
If not, change R_{7} selection.
5) Place R_{7} in (15) and calculate C_{10} :
$\mathrm{C}_{10} \leq \frac{2 \pi \times \mathrm{Lo} \times \mathrm{Fo} \times \mathrm{Co}}{\mathrm{R}_{7}} \times \frac{\mathrm{V}_{\text {osc }}}{\mathrm{V}_{\text {IN }}}$
6) Place second pole at ESR zero.
$\mathrm{F}_{\mathrm{P} 2}=\mathrm{F}_{\mathrm{ESR}}$
$\mathrm{R}_{8}=\frac{1}{2 \pi \times \mathrm{C} 10 \times \mathrm{FP}_{\mathrm{P} 2}}$
Check if $\mathrm{R}_{8}>\frac{1}{\mathrm{gm}}$
If R_{8} is too small, increase R_{7} and start from step 2.
7) Place second zero around the resonant frequency. $\mathrm{F}_{\mathrm{Z} 2}=\mathrm{FLC}$
$\mathrm{R}_{6}=\frac{1}{2 \pi \times \mathrm{C}_{10} \times \mathrm{F}_{z 2}}-\mathrm{R}_{8}$
8) Use equation (1) to calculate R_{5} :

$$
R_{5}=\frac{V_{\text {REF }}}{V_{\text {out }}-V_{\text {REF }}} \times R_{6}
$$

These design rules will give a crossover frequency approximately one-tenth of the switching frequency. The higher the band width, the potentially faster the load transient speed. The gain margin will be large enough to provide high DC-regulation accuracy (typically -5dB to $12 \mathrm{~dB})$. The phase margin should be greater than 45° for overall stability.

LDO Section

Output Voltage Programming

Output voltage for LDO is programmed by reference voltage and external voltage divider. The Fb3 pin is the inverting input of the error amplifier, which is internally referenced to 1.25 V . The divider is ratioed to provide 1.25 V at the Fb3 pin when the output is at its desired value. The output voltage is defined by using the following equation:
$V_{\text {OUT2 }}=V_{\text {REF }} \times\left(1+\frac{R_{\text {HIGH }}}{R_{\text {LOW }}}\right)$
For:
Vout2 $=2.5 \mathrm{~V}$
$V_{\text {ref }}=1.25 \mathrm{~V}$
Rlow $=1 \mathrm{~K}$
Results to: RHigh=1K

LDO Power MOSFET Selection

The first step in selecting the power MOSFET for the linear regulator is to select the maximum $\operatorname{Ros(on)}$ based on the input to the dropout voltage and the maximum load current.
$\mathrm{RDS}_{\text {(ON })}=\frac{\mathrm{V}_{\text {IN3 }}-\mathrm{V}_{\text {out2 }}}{\text { lout2 }}$
For:
$\mathrm{V}_{\text {in3 }}=3.3 \mathrm{~V}$
Vout2 $=2.5 \mathrm{~V}$
lout2 $=2 \mathrm{~A}$
Results to: $\operatorname{Rds(ON)(MAX)=0.4\Omega }$
Note that since the MOSFET Rds(on) increases with temperature, this number must be divided by ~ 1.5 in order to find the Rds(ON)(max) at room temperature. The IRLR2703 has a maximum of $0.065 \Omega R_{\mathrm{Ds}(\mathrm{ON})}$ at room temperature, which meets our requirements.

Layout Consideration

The layout is very important when designing high frequency switching converters. Layout will affect noise pickup and can cause a good design to perform with less than expected results.

Start to place the power components, make all the connection in the top layer with wide, copper filled areas. The inductor, output capacitor and the MOSFET should be close to each other as possible. This helps to reduce the EMI radiated by the power traces due to the high switching currents through them. Place input capacitor
directly to the drain of the high-side MOSFET, to reduce the ESR replace the single input capacitor with two parallel units. The feedback part of the system should be kept away from the inductor and other noise sources, and be placed close to the IC. In multilayer PCB use one layer as power ground plane and have a control circuit ground (analog ground), to which all signals are referenced. The goal is to localize the high current path to a separate loop that does not interfere with the more sensitive analog control function. These two grounds must be connected together on the PC board layout at a single point.

TYPICAL APPLICATION

12V to 3.3V @ 4A
12V to 1.8 V @ 4A
3.3V to 2.5V @ 2A

Figure 8 - Typical application of IRU3048 in an on-board DC-DC converter using a single 12 V supply for switcher.

DEMO-BOARD APPLICATION

12V to 3.3V @ 4A
5V to 1.8V@4A
3.3V to 2.5V @ 2A

Figure 9 - Demo-board application of IRU3048.

12V to 3.3V @ 4A
5V to 1.8V@4A
3.3V to 2.5V @ 2A

Ref Desig	Description	Value	Qty	Part\#	Manuf	Web site (www.)
Q1	MOSFET	30V, $45 \mathrm{~m} \Omega$	1	IRLR2703	IR	irf.com
Q2, Q3	MOSFET	30V, 29m , 5.2A	2	IRF7313	IR	
U1	Controller	Synchronous PWM	1	IRU3048CF	IR	
D1	Diode	Fast Switching	1	BAT54S	IR	
L1, L2	Inductor	$1 \mu \mathrm{H}, 2.9 \mathrm{~A}$	2	ELL6SH1R0M	Panasonic	maco.panasonic.co.jp
L3	Inductor	$6.8 \mu \mathrm{H}, 4 \mathrm{~A}$	1	ELLATV6R8M	Panasonic	
L4	Inductor	$10.2 \mu \mathrm{H}, 4 \mathrm{~A}$	1	ETQP6F102HFA	Panasonic	
$\begin{aligned} & \hline \mathrm{C} 1,7,8,13, \\ & 14,17,23 \\ & \hline \end{aligned}$	Cap, Ceramic	$1 \mu \mathrm{~F}, \mathrm{Y} 5 \mathrm{~V}, 16 \mathrm{~V}$	7	ECJ-2VF1C105Z	Panasonic	
C2, C4	Cap, Tantalum	$33 \mu \mathrm{~F}, 16 \mathrm{~V}$	2	ECS-T1CD336R	Panasonic	
C3, C24	Cap, Ceramic	$0.1 \mu \mathrm{~F}, \mathrm{Y} 5 \mathrm{~V}, 25 \mathrm{~V}$	2	ECJ-2VF1E104Z	Panasonic	
C5	Cap, Ceramic	1 $\mu \mathrm{F}, \mathrm{X} 7 \mathrm{R}, 25 \mathrm{~V}$	1	ECJ-3YB1E105K	Panasonic	
C9, C15	Cap, Tantalum	$47 \mu \mathrm{~F}, 10 \mathrm{~V}$	2	ECS-T1AD476R	Panasonic	
C10, C20	Cap, Ceramic	470pF, X7R, 50V	2	ECJ-2VC1H471J	Panasonic	
C18, C19	Cap, Ceramic	1800pF, X7R, 50V	2	ECJ-2VB1H182K	Panasonic	
C6	Cap, Poscap	$47 \mu \mathrm{~F}, 16 \mathrm{~V}, 70 \mathrm{~m} \Omega$	1	16TPB47M	Sanyo	sanyo.com/industrial
$\begin{array}{\|l} \hline \text { C11,12,16 } \\ 21,22 \\ \hline \end{array}$	Cap, Poscap	$150 \mu \mathrm{~F}, 6.3 \mathrm{~V}, 40 \mathrm{~m} \Omega$	5	6TPC150M	Sanyo	
R1,3,10,12	Resistor	2.15Ω	4			
R2	Resistor	10Ω	1			
R4, R13	Resistor	4.7Ω	2			
R5,7,8,15	Resistor	1K, 1\%	4			
R6	Resistor	1.65K, 1\%	1			
R9	Resistor	46.4K	1			
R11	Resistor	39.2K	1			
R14	Resistor	442, , 1\%	1			

WAVEFORMS

Figure 4 - Transient response @ lout = 0 to 2A for 3.3 V output.

Figure 6 - Transient response @ lout = 0 to 2A for 2.5 V output.

Figure 5 - Transient response @ lout = 0 to 2A for 1.8 V output.

Figure 7 - Output voltage ripple for 3.3V @ 4A.

WAVEFORMS

Figure 8 - Output voltage ripple for $1.8 \mathrm{~V} @ 4 \mathrm{~A}$.

Figure 9 - Gate signals for 3.3V output.
Ch1: Output current 2A/div.
Ch2: Gate signal for control FET 20V/div.
Ch3: Gate signal for sync FET 10V/div.

Figure 11 - Gate signals for 1.8 V output.
Ch1: Output current 2A/div.
Ch2: Gate signal for control FET 10V/div.
Ch3: Gate signal for sync FET 10V/div.

International
 Igr Rectifier

(F) TSSOP Package 16-Pin

DETAIL A

SYMBOL DESIG	16-PIN		
	MIN	NOM	MAX
B	0.65 BSC		
B	4.30	4.40	4.50
C	6.40 BSC		
D	0.19	---	
E	1.00		
F	1.00		
G	4.90	5.00	5.10
H	---	---	1.10
J	0.85	0.90	0.95
K	0.05	---	0.15
L	12° REF		
M	12° REF		
N	0°	---	8°
O	1.00 REF		
P	0.50	0.60	0.75
Q	0.20		
R	0.09	---	---
R1	0.09	---	---

NOTE: ALL MEASUREMENTS ARE IN MILLIMETERS.
(S) SOIC Package

16-Pin Surface Mount, Narrow Body

16-PIN		
SYMBOL	MIN	MAX
A	9.80	9.98
B	1.27 BSC	
C	0.51 REF	
D	0.36	0.46
E	3.81	3.99
F	1.52	1.72
G	0.10	0.25
H	7° BSC	
I	0.19	0.25
J	5.80	6.20
K	0°	8°
L	0.41	1.27
T	1.37	1.57

NOTE: ALL MEASUREMENTS ARE IN MILLIMETERS.

PACKAGE SHIPMENT METHOD

PKG DESIG	PACKAGE DESCRIPTION	PIN COUNT	PARTS PER TUBE	PARTS PER REEL	T \& R Orientation
F	TSSOP Plastic	16	---	2500	Fig A
S	SOIC, Narrow Body	16	50	2500	Fig B

Figure A

Figure B

TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information

