: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

C0203 Intelligent Controller User Manual
 Revision B

C0203
Intelligent Controller Version 1.1

NKK SWITCHES
7850 E. Gelding Drive
Scottsdale, AZ 85260
Toll Free 1-877-2BUYNKK (877-228-9655)
Phone 480-991-0942
Fax 480-998-1435
e-mail engineering@nkkswitches.com

All Rights Reserved Worldwide

NKK Switches makes no warranty for the use of these products and assumes no responsibility for any errors, which may appear in this document, nor does it make a commitment to update the information contained herein. Smart Switch is trademark of NKK Switches.

C0203 Intelligent Controller User Manual

7850 East Gelding Drive • Scottsdale, AZ 85260-3420

TABLE OF CONTENTS

Table of Contents 2

1. General Controller Features 3
2. Compatible Logic Boards 3
3. Operational Overview 4
4. Operational Details 7
5. Communication Protocol 9
6. Hardware 18
7. Key Terms \& Definitions 23
8. Firmware problems 23

1. General Controller Features

The C0203 controls two high resolution (64×32) switches/ displays or two standard (36×24) switches/ displays. The firmware can be customized based on customer requirements. Below are current features:

- Controls two high resolution (64×32) switches/ displays or two standard (36x24) switches/ displays
- Serial communication via RS232 (57.6K, 1 start bit, 8 bit, 1 stop bit)
- Optional audio feedback while switch is pressed.
- Program responses to switch-actions events and timer-expire events.
- User programmable for images, attributes and set-ups.
- Set the type of activity reports from the controller to host.
- LED Brightness settings.
- Flash memory for 255 pictures and attributes.
- Reports switch activity and timer expiration via serial port.
- Stand alone operation or real time control by host.

2. Compatible Logic Boards

The following is a list of compatible Logic Boards and switches.
A. IS-L02A1-C
B. IS-L02F1-C
C. IS-L02H2-C
D. IS-L0204-C
E. IS-L0251-C
F. IS-L0271-C
G. IS-L0205-C

64x32 RGB
64x32 RGB Display
64x32 Compact
Standard RGB
Standard RGB Display
Standard RGB Compact
Standard Bicolor/single color

3. Operational Overview

Power-up Sequence:

Upon power up, the controller checks the position of the Mode Select Switch. The switch position has to match the logic board/switches connected. The "High res" position will work only for High Resolution (64x32) switches/ displays while the "Standard res" position will work only for Standard Resolution (36x24) switches/ displays.

Note: Setting the switch to a different setting than the Logic Board type may damage the assembly.

LED Brightness Adjustment Mode:

The controller will then allow the backlight brightness to be adjusted. Press the left hand switch to make both LED modules dimmer. Press the right hand switch to make both LED modules brighter.

Main Operational Mode:

After a few seconds of user inactivity the controller will move into the main operations mode where the switch on the left displays the image at the user's first preset address. The right hand switch will display the image at the user's second preset address. The controller will then respond to a switch actuation or a timer expiration as set by the user preset attributes.

Addresses:

A one byte value ranging from 01 H to FFH representing the 255 memory.

Attribute Block for 64x32 Resolution Switches

A block of 8 bytes.

Byte	Description
1	Address for LCD Module \#1 when switch is pressed.
2	Address for LCD Module \#2 when switch is pressed
3	Address for LCD Module \#1 when the timer is expired.
4	Address for LCD Module \#2 when the timer is expired.
5	Value for TIMER 1
6	Value for TIMER 2
7	LED CODE for on cycle
8	LED CODE for off cycle

C0203 Intelligent Controller User Manual
SயITCHES
7850 East Gelding Drive • Scottsdale, AZ 85260-3420

LED Backlighting for $\mathbf{6 4 x} 32$ Resolution Switches:
The LED code has two bytes, one byte for "on cycle" and one byte for "off cycle". The format for both bytes is the same. Following is the byte format:

B7	B6	B5	B4	B3	B2	B1	B0
R	R	G	G	B	B	1	1

For each of red, green and blue color:

$$
\begin{aligned}
& \mathbf{0 0}=\text { off } \\
& \mathbf{0 1}=1 / 4 \text { brightness } \\
& 10=1 / 2 \text { brightness } \\
& 11=\text { full brightness }
\end{aligned}
$$

Image Block for 64x32 Resolution Switches:

Bit map format for the Legend block

Byte 8	Byte 7	\ldots	Byte2	Byte 1
D7D6D5D4D3D2D1D0	D7D6...D1D0	\ldots	D7D6...D1D0	D7D6D5D4D3D2D1D0
Byte 16		\ldots		Byte 9
D7D6D5D4D3D2D1D0		\ldots		D7D6D5D4D3D2D1D0
.	.	\ldots	.	.
.	.	\ldots	.	.
.	.	\ldots	.	.
.	.	.	.	
Byte 256		\ldots		Byte 249
D7D6D5D4D3D2D1D0	D7D6...D1D0	\ldots	D7D6...D1D0	D7D6D5D4D3D2D1D0

Please note this bit map is different than the switch bitmap.

Attribute Block for 36x24 Resolution Switches

A block of 6 bytes.

Byte	Description
1	Address for LCD Module \#1 when switch is pressed.
2	Address for LCD Module \#2 when switch is pressed
3	Address for LCD Module \#1 when the timer is expired.
4	Address for LCD Module \#2 when the timer is expired.
5	Value for TIMER 1
6	Value for TIMER 2

C0203 Intelligent Controller User Manual

7850 East Gelding Drive • Scottsdale, AZ 85260-3420

Image Block for 36x24 Resolution Switches:

A block of 125 bytes. It contains picture data and LED codes.

Byte	Description
$1-5$	First line of picture
$6-10$	Second line of picture
\bullet	
\bullet	
\bullet	
$116-120$	24 th line of picture
121	LED code
$122-125$	reserved

LED Backlighting for 36x24 Resolution Switches:

The LED code is one byte with the following format:
B7=0 ==> Reserved
B7 $=1==>$ Reserved
B6=0 ==> Blue backlighting off during "OFF CYCLE"
B6=1 ==> Blue backlighting on during "OFF CYCLE"
B5=0 ==> Green backlighting off during "OFF CYCLE"
B5 $=1==>$ Green backlighting on during "OFF CYCLE"
B4=0 ==> Red backlighting off during "OFF CYCLE"
B4=1 ==> Red backlighting on during "OFF CYCLE"
B3=0 $==>$ LCD normal
B3=1 $==>$ LCD inverse
B2=0 ==> Blue backlighting off during "ON CYCLE"
B2 $=1==>$ Blue backlighting on during "ON CYCLE"
$B 1=0==>$ Green backlighting off during "ON CYCLE"
$\mathrm{B} 1=1==>$ Green backlighting on during "ON CYCLE"
$\mathrm{B} 0=0==>$ RED backlighting off during "ON CYCLE"
$\mathrm{B} 0=1==>$ RED backlighting on during "ON CYCLE"

4. Operational Details

Power-Up Sequence (Steps 1,2,3)

Upon power-up or reset, controller performs the following steps:
Step 1: Check the status of Mode Select Switch for mode of operation. Initialize according to selected mode.
Step 2: Check if the flash RAM has been programmed. Compare the check string to flash RAM string.
A. If the strings are not the same, the flash RAM is virgin and its data is not acceptable. Step 3 will be executed. (first time)
B. If the strings are the same, the data from RAM is acceptable. Step 3 is omitted and Step 4 is executed.

Step 3: Write all the default initialize values to the flash memory as follows:
A. Put "BLANK FONT MEMORY" as the picture for location one.
B. Put "BLANK FONT MEMORY" as the picture for location two.
C. Put ONcycle LED's ON for location \#1 and \#2.
D. Put OFFcycle LED's off for location \#1 and \#2.
E. Put " 00 H 00 H 00 H 00 H 00 H 00 H " as attribute for location \#1 and \#2.
F. Put 00 H for software version
G. Write the default setup values such OFFcycle, ON/OFF ratio...
H. Write the virgin check string.

Step 4: LED brightness adjustment as follows:
A. Display "DOWN LED" and "UP LED" on the two switches and allow for adjustments of the brightness. There are 8 brightness levels (0 to 7). When the internal timer is expired, the controller proceeds to Step 5 . Every time a switch is pressed, the timer gets reset. If a switch is held depressed the timer does not run. Switch activity are not reported to host.
B. When the timer expires transmit 83 H
C. Initialize and load the data from location 1 and 2 of EEPROM to internal RAM for switch 1 and 2 respectfully.

Main Operational Mode

Step 5:

A. If the switch one is pressed: Transmit 81 H to host and execute the attribute.
(For details see Attribute Execution)
B. If the switch two is pressed: Transmit 82 H to host and execute the attribute.
(For details see Attribute Execution)
C. If the timer for switch 1 is expired: Transmit 83 H to host and execute the timer attribute. (For details see Attribute Execution)
D. If the timer for switch 2 is expired: Transmit 84 H to host and execute the timer attribute. (For details see Attribute Execution)
E. If the switch one is released: Transmit B1H to host.
F. If the switch two is released: Transmit B2H to host.

7850 East Gelding Drive • Scottsdale, AZ 85260-3420

G. Checks the host communication buffer for data. If there is data, process them. (For details see Communication Protocol)
H. Go to step 5 section A

Attributes Execution

When a switch is pressed the attributes are executed as follows:
A. The timer for the switch is reset and does not run until the switch is released.
B. If byte 1 of the switch attributes is not equal to zero then the Legend block and attribute block from the EEPROM is transferred to internal RAM for switch 1 . The Legend, backlighting and timer values are put in effect for switch 1.
C. If byte 1 of the switch attributes is equal zero then there will be no change to Legend/attribute of the switch 1.
D. If byte 2 of the switch attributes is not equal to zero then the Legend block and attribute block from the EEPROM is transferred to internal RAM for switch 2. The Legend, backlighting and timer values are put in effect for switch 2.
E. If byte 2 of the switch attributes is equal zero then there will be no change to Legend/attribute of the switch 2.

When one of the timers is expired the attributes are executed as follows:
A. The timer that expired gets reset.
B. Both timers will pause until attributes are executed.
C. If byte 3 of switch attributes is not equal zero then the Legend block and attribute block from the EEPROM is transferred to internal RAM for switch 1 . The Legend, backlighting and timer values are put in effect for switch 1.
D. If byte 3 of switch attributes is equal zero then there will be no change to Legend/attributes of the switch 1.
E. If byte 4 of the switch attributes is not equal to zero then the Legend block and attribute block from the EEPROM is transferred to internal RAM for switch 2. The Legend, backlighting and timer values are put in effect for switch 2.
F. If byte 4 of the switch attributes is equal zero then there will be no change to Legend/attribute of the switch 2.

Timers Operation

- Switch one and switch two timers run independently.
- Timer will be disabled if the timer 1 value is zero.
- The timer value in second $=($ TIMER 1$) x($ TIMER 2$) x(0.0369)$
- TIMER $2=0$ count as 256 .

5. Communication Protocol

The controller communicates with the host by serial communication via RS232 ($57.6 \mathrm{~K}, 1$ start bit, 8 bit, 1 stop bit). The controller receives the data via an interrupt routine that places the data on the circular receive buffer. When the controller detects data in the circular receive buffer, at Step 5G, it reads one byte and executes the following:
A. If the byte is a command, the controller transmits a 61 H and executes the subroutine for the command and upon completion of command the controller transmits 79 H . All of the commands are explained in detail in this section.
B. If the byte is not a command, it is ignored.

When the controller executes a subroutine and expects additional information:
A. A timer is set. If the expected data byte is not received in 50 ms , the controller transmits 6 EH and terminates the routine.
B. If the byte value is not acceptable (invalid range, option, etc.), the controller transmits 6EH and terminates the routine.

Commands are one byte in the range of 20 H to 2 FH and 01 H and are transmitted in hex format. The proper format for all command options and data is specified for each command.

Commands to the controller

Command to reboot the controller

The command reboots the controller to power-up state.

command format:	$\mathbf{2 4 H}$
transmit format:	$(x x H)$

Command to check communication

The command is used to check if the controller is on-line.

$$
\text { command format: } \quad \mathbf{0 1 H}
$$

$$
\text { transmit format: } \quad(\mathrm{xxH})
$$

The controller transmits back 61H to the host.

Command to download a Legend block

This command downloads a Legend block from the host to the EEPROM location.

command format:	$\mathbf{2 8 H}$	[Address]
transmit format:	(xxH)	(xxAH)

```
7850 East Gelding Drive • Scottsdale, AZ 85260-3420
```

[Address] is one byte with value of 01 H to FFH sent as ASCII HEX format.
[Legend Block] is 125 bytes in standard resolution mode and is 256 bytes in high resolution mode transmitted in ASCII HEX format.

The controller disables the timers and switch execution upon receiving this command. However, the switches are still scanned and reported. They are enabled upon reboot/power up or by command from host.

Command to upload a Legend block

This command uploads a Legend block from the EEPROM location to the host.

$$
\text { command format: } \mathbf{2 9 H} \text { [Address] }
$$

transmit format: (xxH) (xxAH)
[Address] is one byte with value of 01 H to FFH sent as ASCII HEX format.
The controller transmits back the image (125 bytes in standard resolution mode and is 256 bytes in high resolution mode) in HEX format.

The controller disables the timers and switch execution upon receiving this command. However, the switches are still scanned and reported. They are enabled upon reboot/power up or by command from host.

Command to download attribute block

This command downloads an attribute block from the host to the EEPROM location.
command format: 2AH [Address] [Attribute Block]
transmit format: (xxH) (xxAH) (xxAH)
[Address] is one byte with value of 01 H to FFH sent as ASCII HEX format.
[Attribute Block] is six bytes in standard resolution mode and is eight bytes in high resolution mode transmitted in ASCII HEX format.

The controller disables the timers and switch execution upon receiving this command. However, the switches are still scanned and reported. They are enabled upon reboot/power up or by command from host.

Command to upload an attribute block

This command uploads an attribute block from the EEPROM location to the host.
command format: $\mathbf{2 B H}$ [Address]
transmit format: (xxH) (xxAH)
[Address] is one byte with value of 01 H to FFH sent as ASCII HEX format.
[Attribute Block] is six bytes in standard resolution mode and is eight bytes in high resolution mode transmitted in ASCII HEX format.

The controller transmits back the [Attribute block] in hex format.

The controller disables the timers and switch execution upon receiving this command. However, the switches are still scanned and reported. They are enabled upon reboot/power up or by command from host.

Command to set LED codes

This command sets the LED backlights according to the command's LED codes.

command format:	2CH	00H	[LED for Switch 1]	[LED for Switch 2]
transmit format:	(xxH)	(xxAH)	(xxAH)	(xxAH)

[LED for switch 1] is one byte for standard resolution and two bytes for high resolution (first byte for on-cycle and second byte for off cycle).
[LED for switch 2] is one byte for standard resolution and two bytes for high resolution (first byte for on-cycle and second byte for off cycle).

Example: The following hex string makes switch 1 display green for "ON/OFF CYCLE" and switch 2 display white for 'ON CYCLE' and red for "OFF CYCLE"

For standard resolution mode	For high resolution mode
2C 00 3232 3137	2C 00 3333 3333 4646 4233

Command to transfer from EEPROM to internal RAM by Addresses

This command transfers the data from EEPROM to internal RAM according to the addresses. If either of the address values is zero no transfer takes place for that address.

command format:	2DH	$00 H$	[Address for Switch 1]
transmit format:	(xxH)	(xxH)	(xxAH)

[Address for Switch 1] is one byte with value of 00 H to FFH .
[Address for Switch 2] is one byte with value of 00H to FFH.
Example: The following hex string makes switch 1 display the data from location 5 and makes switch 2 display the data from location 6. 2D 0030353036

Command to transfer from EEPROM to internal RAM for one Address

This command updates the specified switch with the data from EEPROM using the address.
command format: 2EH [LCD Module \#] [Address]
transmit format: (xxH) (31H or 32 H$) \quad(\mathrm{xxAH})$
[LCD Module \#] is the switch number (31H for switch 1, 32 H for switch 2)
[Address] is one byte with value of 01 H to FFH .

Command to set one LCD/LED Code

This command updates the LED's of specified switch with the LED code.

```
command format: 2FH [LCD Module #] [LED code]
transmit format: (xxH) (31H or 32H) (xxAH)
```

[LCD Module \#] is the switch number (31H for switch 1, 32 H for switch 2)
[LED code] is one byte for standard resolution and two bytes for high resolution (first byte for on-cycle and second byte for off cycle). B0 and B1 must be 1 for high resolution.

Command to query controller for mode, controller, and firmware version

This command queries the controller for the mode as set by the Mode Select Switch, the controller name, and the firmware version installed.

```
command format: 26H 52H 58H
transmit format: (xxH) (xxH) (xxH)
```

Example: The command is sent. The controller responds with the following:

61	31	4330323033	3131	79
61 H	[mode]	[Controller name]	[version]	79 H

[mode] is one byte. 31 H indicates standard resolution module mode or 32 H indicates high resolution mode. [Controller name] is five bytes. 43 H 30 H 32 H 30 H 33 H (C0203)
[version] is one byte. 12 H (version 1.1)

Command to upload the active Addresses

This command transmits 61 H followed by the active addresses for switch 1 and 2 in hex format.
command format: $\quad \mathbf{2 6 H} \quad 00 \mathrm{H}$
transmit format: (xxH) (xxH)

Command to set the data version

This command sets the version of the data in the FLASH memory. Default value $(00 \mathrm{H})$.

command format:	$\mathbf{2 6 H}$	42 H		
transmit format:	(xxH)	[xxH)	\quad	(xxata Version]
:---:				

Command to upload the data version

This command uploads the version of the data in the FLASH memory to the host in one byte HEX format.
command format: $\mathbf{2 6 H} \quad 41 \mathrm{H}$
transmit format: (xxH) (xxH)

Command to uploads the FIRMWARE version

This command uploads the FIRMWARE version to the host in one byte HEX format.

```
command format: 26H 15H
transmit format: (xxH) (xxH)
```


Command to set LED Brightness

This command sets the LED brightness for the duration of the session.

command format:	$\mathbf{2 6 H}$	51 H	53 H	[LED Brightness]
transmit format:	(xxH)	(xxH)	(xxH)	(xxAH)

[LED BRIGHTNESS] is one byte from 00H (dimmest) to 07 H (brightest). The upper 5 bits of the byte are ignored.
This command is for duration of the session. It can become permanent by "Command to write the setup values to the EPROM".

Command to set LED press value
This command sets the LED code for when the switch is pressed. It applies to standard resolution switches only.
command format: $\quad \mathbf{2 6 H} \quad 51 \mathrm{H} \quad 55 \mathrm{H} \quad$ [LED code] transmit format: (xxH) (xxH) (xxH) (xxAH)
[LED code] is one byte for standard resolution. B0 of FLAG A must be set. Standard resolution only This command is for duration of the session. It can become permanent by "Command to write the setup values to the EPROM".

Command to set LED off cycle duration

This command sets the duration of the off cycle.

command format:	$\mathbf{2 6 H}$	51 H	57 H
transmit format:	(xxH)	(xxH)	(xxH)

[LED OFF cycle] is one byte.
This command is for duration of the session. It can become permanent by "Command to write the setup values to the EPROM".

C0203 Intelligent Controller User Manual
ऽ ய ا Тᄃ 도
7850 East Gelding Drive • Scottsdale, AZ 85260-3420

Command to set LED on cycle duration

This command sets the duration of the on cycle.

command format:	$\mathbf{2 6 H}$	51 H	59 H	[LED ON/OFF cycle]
transmit format:	(xxH)	(xxH)	(xxH)	(xxAH)

[LED ON/OFF cycle] is one byte.
Duration of ON cycle $=([$ LED ON/OFF $]-1) *($ duration of OFF cycle $)$
This command is for duration of the session. It can become permanent by "Command to write the setup values to the EPROM".

Command to set FLAG A

This command sets Flag A.
$\begin{array}{lcccc}\text { command format: } & \mathbf{2 6 H} & 51 \mathrm{H} & 5 \mathrm{BH} & \text { [FLAG A] } \\ \text { transmit format: } & (\mathrm{xxH}) & (\mathrm{xxH}) & (\mathrm{xxH}) & (\mathrm{xxAH})\end{array}$
[FLAG A] is one byte. See table below.
This command is for duration of the session. It can become permanent by "Command to write the setup values to the EPROM".

Flag Byte A Default Value=7EH

Bit	Enable Value	Flag	Controller action when flag is set
B0	1	LED press flag	Switch backlight change according to LED press value while the switch is pressed. For standard resolution only.
B1	1	61 H flag	61 H is transmitted in response to lommand.
B2	1	79H flag	79 H is transmitted upon completion of command.
B3	1	Switch release report flag	Switch releases are reported
B4	1	6EH flag	6EH is transmitted if there is any error during communication to host.
B5	1	Switch press report flag	Switch presses are reported
B6	1	Timer 1 and 2 expire report flag	Timer 1 and 2 expiration is reported
B7	1	Address change report flag	Newest address is reported for each switch

7850 East Gelding Drive • Scottsdale, AZ 85260-3420

Command to download FLAG B

This command sets Flag B.

command format:	$\mathbf{2 6 H}$	51 H	5 CH	[FLAG B]
transmit format:	(xxH)	(xxH)	(xxH)	(xxAH)

[FLAG B] is one byte. See table below.
This command is for duration of the session. It can become permanent by "Command to write the setup values to the EPROM".

Flag Byte B Default Value=01H

Bit	Enable Value	Flag	Controller action when flag is set
B0	1	BEEPER	Beep for switch press
B1	0	Reserved	
B2	0	Reserved	
B3	0	Reserved	
B4	0	Reserved	
B5	0	Reserved	
B6	0	Reserved	
B7	0	Reserved	

Command to set timers for LED up/ LED down

This command sets the timers that determine the time "DOWN LED" and "UP LED" are displayed upon power up. Every time the switches are pressed the timers get reset.

```
command format: 26H 51H 5DH [Timer1] [Timer2]
transmit format: (xxH) (xxH) (xxH) (xxAH) (xxAH)
```

[Timerl] is one byte from 01 H to FFH .00 H is not acceptable. Default $(09 \mathrm{H})$
[Timer2] is one byte from 00 H to $\mathrm{FFH} .00 \mathrm{H}=256$. Default (09 H)
This command does not go to effect until it becomes permanent. It can become permanent by "Command to write the setup values to the EPROM".

Command to download power up Addresses

This command sets the addresses for switch 1 and switch 2 upon power up or reset.

command format:	$\mathbf{2 6 H}$	51 H	5 EH	[Address for Switch 1]	[Address for Switch 2]
transmit format:	(xxH)	(xxH)	(xxH)	(xxAH)	(xxAH)

[Address for Switch 1] is one byte from 01 H to FFH. 00H is not acceptable. Default (01H) [Address for Switch 1] is one byte from 01 H to FFH. 00H is not acceptable. Default (02 H) This command does not go to effect until it becomes permanent. It can become permanent by "Command to write the setup values to the EPROM".

Command to write the setup values to the EPROM

This command writes the setup values to the flash as per the following table. Once commanded the values become permanent.

command format:	$\mathbf{2 6 H}$	51 H	4 FH	34 H	46 H
transmit format:	(xxH)	(xxH)	(xxH)	(xxH)	(xxH)

- LED press value
- LED brightness level
- LED off cycle duration
- LED on/off cycle ratio
- FLAG A
- FLAG B
- Timers for LED up/LED down
- Power up addresses

Command to reset the setup values to the default values

This command writes the default values to the flash. Once commanded the values become permanent after power up or reboot. Sets Addresses 01H and 02H memories to "BLANK FONT MEMORY".

command format:	$\mathbf{2 6 H}$	51 H	4 EH	34 H	45 H
transmit format:	(xxH)	(xxH)	(xxH)	(xxH)	(xxH)

Command to fill display with specified byte

This command displays a specified byte over all of the display.
command format: $\mathbf{2 7 H}$ [LCD Module \#] 00 H [Byte]
transmit format: (xxH) (31H or 32 H$) \quad(\mathrm{xxH}) \quad(\mathrm{xxAH})$
[LCD Module \#] is the switch number (31H for switch 1, 32 H for switch 2)
[Byte] Specified byte.

Command to transfer the RAM to specified address

This command transfers the RAM to the specified address.
command format: $\mathbf{2 7 H}$ [LCD Module \#] 02H [Address]
transmit format: (xxH) (31H or 32H) (xxH) (xxAH)
[LCD Module \#] is the switch number (31H for switch 1, 32 H for switch 2)
[Address] is one byte with value of 01 H to FFH .

Command to download ASCII string (7x10 fonts)

This command downloads and displays an ASCII string.

command format:	$\mathbf{2 7 H}$	[LCD Module \#]	70 H	[ASCII string]
transmit format:	(xxH)	$(31 \mathrm{H}$ or 32 H$)$	(xxH)	(xxAH)

[LCD Module \#] is the switch number (31H for switch 1, 32 H for switch 2) [ASCII string] is 8 characters for Standard and 24 characters for High resolution. The controller will make 2 lines of 4 characters using the 7×10 fonts for standard. The controller will make 3 lines of 8 characters using the 7×10 fonts for high resolution.
Standard: 8 ASCII characters. High resolution: 24 ASCII characters
Example: The following hex string makes switch 1 display A to X on high resolution.
2731704142434445464748 494A 4B4C 4D4E 4F50 5152535455565758

Command to download ASCII string (5×7 fonts)

This command downloads and displays an ASCII string.
command format: 27H [LCD Module \#] 50H [ASCII string]
transmit format: $\quad(x x H) \quad(31 H$ or $32 H) \quad(x x H) \quad(x x A H)$
[LCD Module \#] is the switch number (31H for switch 1, 32 H for switch 2)
[ASCII string] is 18 characters. The controller will make 3 lines of 8 characters using the 5 x 7 fonts for standard. Standard: 18 ASCII characters. High resolution: not available.

Example: The following hex string makes switch 1 display A to X on standard resolution.
2731504142434445464748 494A 4B4C 4D4E 4F50 5152

6. Hardware

Controls Overview

The Mode Select Switch has two settings; "High res" is for the High Resolution (64x32) switches/ displays and "Standard res" is for the Standard RGB switches/ displays.
The Connector is for the installation of the Logic Boards onto the controller. One pin is keyed to reduce miss mates.

Note: Improper installation of the Logic Boards could damage either/both the Logic Board and controller.

The Batt/PWR switch has three positions: battery, off, line power.
Buzzer Volume adjusts the volume of the buzzer that activates when a button is pushed.
The 9V DC Power jack mates with a 2.5 mm cylinder power connector. Center positive.
The RS232 Connector links the controller to the host.

	1	2	3	4	5	6
RS232		GND	TX	RX	GND	

C0203 Intelligent Controller User Manual

7850 East Gelding Drive • Scottsdale, AZ 85260-3420

Controller Schematic

Two Standard Resolution SmartSwitch, 36X24 RGB, logic board

C0203 Intelligent Controller User Manual
ऽய। Т ᄃ HES
7850 East Gelding Drive • Scottsdale, AZ 85260-3420

C0203 Intelligent Controller User Manual
S Ш І Т ᄃ HES
7850 East Gelding Drive • Scottsdale, AZ 85260-3420

Two High Resolution SmartSwitch, 64X32 RGB, logic board

ח1<l<
 SயITCHES
 C0203 Intelligent Controller User Manual

7850 East Gelding Drive • Scottsdale, AZ 85260-3420

Container size

Board photo

7. Key Terms \& Definitions

Module

Host

Byte

Nibble/Hex digit

ASCII
Communication
Format

NKK Switches' LCD SmartSwitches and SmartDisplays.
Any computer, terminal, or other device that can communicate over the RS232 line.

An eight bit hex value ranging from 00 H to FFH (Decimal 0 to 255). The bit format of a byte is: (B7 B6 B5 B4 B3 B2 B1 B0) where B7 is most significant and bit B 0 is least significant bit.

A four bit value ranging from 0 H to FH . A byte consists of two nibbles.
A byte value representing a symbol.
There are two formats to transmit a byte:

1. Hex format - A hex byte is transmitted without any change to it. [$\mathbf{x x H}]$ will be used to denote this.

All commands and some data are sent by using this format.
2. ASCII HEX format - Each nibble of the byte is converted to ASCII code and sent as a byte. [$\mathbf{x x A H}$] will be used to denote this.

For example, the hex byte 5AH is transmitted in two bytes, $\mathbf{3 5 H}$ and $\mathbf{4 1 H}$. The ASCII value for $\mathbf{5}$ is $\mathbf{3 5 H}$ and the ASCII value for \mathbf{A} is $\mathbf{4 1 H}$.

All addresses and most data are sent using this format.
Address
A one byte value ranging from 01 H to FFH representing the 255 memory.

8. Firmware issues

The problems found in the most current version are listed below and will be resolved in the following version.

Version V11

1. Command 29H: High resolution does not upload complete data.
2. Command 26 H 52 H 58 H : Uploads version 10 instead of current version 11.
3. Command 26 H 51 H 5 DH : Does not work for standard or high resolution.
4. Command 26H 51H 5EH: Does not work for standard or high resolution.
