: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

IS-Dev Kit-7 User’s Manual

IS-Dev Kit-7 \& 7D User’s Manual
 Revision B

Firmware Version 2.6

NKK SWITCHES
7850 E. Gelding Drive
Scottsdale, AZ 85260
Toll Free 1-877-2BUYNKK (877-228-9655)
Phone 480-991-0942
Fax 480-998-1435
e-mail engineering@nkkswitches.com

All Rights Reserved Worldwide

NKK Switches makes no warranty for the use of these products and assumes no responsibility for any errors, which may appear in this document, nor does it make a commitment to update the information contained herein. Smart Switch is trademark of NKK Switches.

รய॥Тᄃ보
7850 East Gelding Drive • Scottsdale, AZ 85260-3420

TABLE OF CONTENTS

Table of Contents 2

1. General Controller Features 3
2. Thank you for purchasing NKK Switches' DEV KIT 4
3. Preface 5
4. Operational Overview 6
5. Programming the IS-Dev Kit-7 11
6. Operational Details 16
7. Communication Protocol 20
8. Commands 21
9. New Character Commands 29
10. Hardware 32
11. Key Terms \& Definitions. 37
12. Firmware problems 38
Appendix 39

1. General Features

The IS-Dev Kit-7 is a two OLED SmartSwitches (ISC15ANP4) Development kit. The IS-Dev Kit-7D Version is a two OLED SmartDisplays (ISC01P) Development kit. The IS-Dev kit-7D additionally has a JB switch below each OLED SmartDisplay.
The CL04 controller is used in these development Kits as well as IS-DEV KIT-8. For complete features of the CL04 controller refer to IS-CL04R user manual.
In this document we refer to both OLED Smart Switch and OLED Smart Display as OLED Switch.
Below are current features:

- IS-Dev Kit-7 controls two OLED (64x48) SmartSwitches (ISC15ANP4).
- Pushbutton functionality on each SmartSwitch.
- RGB color OLED display with a resolution of 64 x 48 pixels.
- IS-Dev Kit-7D controls two OLED (52x36) SmartDisplays (ISC01P).
- JB switches below SmartDisplays for control.
- RGB color OLED display with a resolution of 52×36 pixels.
- Power from 9V battery or AC power supply. (9V battery not included).
- On board microSD Flash that can hold up to 65,536 images.
- Adjustable audio feedback when a switch is pressed.
- Software control for 16 levels of brightness setting to extend OLED life.
- User programmable for images, attributes and set-ups.
- Real-time control by host.
- Commands to direct the controller to display any of 65535 images
- Command to send characters so controller create images for the displays
- Commands to check various statuses of the controller
- Report switch activities to host
- Report the address of any new image displayed to host
- Stand-alone operation
- Set up the controller to function based on switch presses.
- Set up to the controller to function based on timer expire.
- Report switch activities to host
- Report the address of any new image displayed to host
- Serial communication via RS232 (57.6K, 1 start bit, 8 bit, 1 stop bit).
- Set the type of activity reports from the controller to host.
- Power requirement: 5 V to 12 V at 100 mA Max
- Controller board firmware can be customized based on customer requirements.

2. Thank you for purchasing NKK Switches' Development kit

By purchasing this kit a new horizon of design is expanding before your eyes. The OLED SmartSwitch and OLED SmartDisplay can be the distinguishing feature within your application that sets your product apart from the competition. This kit contains all the necessary components to get you started using, testing and ultimately incorporating NKK Switches' OLED SmartSwitch and OLED SmartDisplay into your designs.

The development kits come preprogrammed for demonstration. They can be reprogrammed by user for demonstration or real time application. NKK provides a free PC software (Universal Communicator) for programming the development kits. It can be downloaded from the web page below. Included in the download are the default demonstration images and attributes.
http://www.nkkswitches.com/SmartSwitch-Download-Software.aspx
There are many documents such as "How to" in the web page below that can be useful. http://www.nkkswitches.com/SmartSwitch-Engineering-Documentation.aspx

The part numbers that come with each kit are listed below. A handling instruction also included in each kit.
IS-DEV KIT-7

	Part Number	QTY	Description
1	IS-CL04-F-E-F-E	$\mathbf{1}$	Controller
2	IS-L02L1-C	$\mathbf{1}$	Logic Board
3	ISC15ANP4	$\mathbf{2}$	OLED Switch (64x48)
4	IS-418-TR1509-12	$\mathbf{1}$	Power Supply
5	IS-SERIAL-CABLE	$\mathbf{1}$	RS232 cable RJ11 to DB9

IS-DEV KIT-7D

	Part Number	QTY	Description
1	IS-CL04-F-E-F-E	1	Controller
2	IS-L02P1-C	1	Logic Board
3	ISC01P	2	OLED Switch (64x48)
4	IS-418-TR1509-12	1	Power Supply
5	IS-SERIAL-CABLE	1	RS232 cable RJ11 to DB9

3. Preface

The IS-Dev Kit-7/7D are development kits designed to demonstrate the features of the OLED
SmartSwitch/Display as well as facilitate the incorporation of the pushbutton or display into new application designs. The OLED SmartSwitch is best used for displaying video or images that change frequently.

This user manual will go through general features and rudimentary commands, like how to download images and attributes, and then go into the more technical details of how the Dev Kit-7 operates. The controller used in these development kits is CL04. It can handle an OLED rocker as well. For a complete list of the controller features you can check the user manual for IS-CL04R.

Section 4 and 5 briefly describe the basic Dev Kit operations and provide a starter guide for programming the Dev Kit with the most popular commands using the Universal Communicator program. These sections were designed for those who wish to simply start using the Dev Kit without getting into the technical details.

Section 6, 7, 8 and 9 covers communication and commands between the host computer and the Dev Kit controller. Section 10 is the hardware and the schematic and section 11 and 12 are definitions and firmware issues. There is also an appendix for understanding hexadecimal.

Universal Communicator

Universal Communicator version 1.7.1 is a free program provided by NKK Switches to help download images and attributes to the Dev Kit controllers. The program is designed to work with the family of SmartSwitch Dev Kits. It can import bitmaps, convert them to the proper switch format, and then download them to the controller. It also allows input and download of attributes.
It can handle single or batch downloads and has the most common commands as easy button interfaces. The Universal communicator can be downloaded from the web page below:
http://www.nkkswitches.com/SmartSwitch-Download-Software.aspx
On the NKK website documents can be found for how to creating images as well as the manual for Universal Communicator that shows how to download images and attributes. They can be found at: http://www.nkkswitches.com/SmartSwitch-Engineering-Documentation.aspx

The dev kits can communicate with any communication software that can perform the communication protocol. Universal Communicator is provided as demonstration software.

4. Operational Overview

Power-up Sequence:

Upon power up, the controller checks the position of the Mode Select Switch. The controller initializes the OLED display or switch based on this selection. The proper selection of switch/display mode must be set before power up.
The OLED switch will show the full image while the "Display" position will display only the middle 52 pixels of the top 36 lines of the image and the to 36 rows.

OLED Brightness Adjustment Mode:

The controller will then allow the brightness of the two OLED modules to be adjusted. The left OLED displays the brightness level " F " and the word DIM. The right OLED displays the brightness " F " and the word BRIGHT. The left button can be pressed to make both displays dimmer and the right button makes both displays brighter.

There are 16 level of brightness $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E$ and F where F is the maximum brightness. The level of brightness is displayed in the middle of image. After power up, the display is at the maximum brightness level (F). The OLED rated life of 15,000 hours is based on the maximum brightness. The dimmer the level is set the longer the life of the OLED. Any switch activity will keep the unit in this mode.
The brightness changes stay in effect for duration of the session.
After 2.6 seconds of user inactivity the controller will move into the main operations mode.

Main Operational Mode:

There are 65535 addresses ($0 x 0001$ to 0 xFFFF) to store images and attributes. Upon power up as default, switch one display image of address $0 x 0001$ and switch two display image of address 0 x 001 F . These addresses are user defined and can be changed.
The IS-DEV KIT-7 is programmed with factory default images. The user can change the images and programming through the use of attributes. The images are pictures to be displayed. The attributes are user defined information on what image to display based on the switch activity and when the timer expires. After a few seconds of user inactivity the controller will move into the main operations mode where the switch on the left displays the image at the user's first preset address. The right hand switch will display the image at the user's second preset address. There is room for 65,535 images and attributes (address 1 to 65535) in memory.

The controller associates one address to each image and the display shows the image at the associated address. Each address has a group of five attributes which together is called an Attribute Block. The function of the Attribute Block is to tell the controller what image to display next either when the switch associated with that particular address is pressed or when the timer expires. These are called actions.

Attribute Block:

Addresses:

The controller associates the first address with the left switch and the second address with the right switch. Each switch will display the image at their associated addresses. The addresses are in hexadecimal. The controller handles the addresses as a group of addresses with associated images and attributes within user defined loops. Each loop has a starter address and an ending address. The function of the attributes for each address is to tell the controller where to point to next either when the switch associated with that particular address is pressed or when a timer expires. There are three types of attributes:

- Attributes SW1 and SW2 are the Action Addresses. In the starting address the Action Addresses tell the controller what addresses to point to when the switch associated with that particular address is pressed. In the ending address the Action Addresses tell the controller what addresses to point to when the loop has ended.
- The end address, EP1, sets the ending address for the loop.
- T1 and T2 are timers that are multiplied together to set the length of time to stay at one address before moving to the next address within the loop.
\bullet
For visual illustration, through out the document blue is used to show a left switch action, green is a right switch action, a dotted red line is the timer action associated with that address. The timer action could be of either of the two timers.

Illustration 1, Switch and timer actions as described by the attributes. The Hex number shown is the address of an image that is displayed.

Right Switch, green

7850 East Gelding Drive • Scottsdale, AZ 85260-3420

The only addresses that need attributes within the loop are the first and last addresses.
Illustration 2 shows the starting and ending addresses for "Switch A" which is associated with address 0001H. Switch A could be the left or right switch.

Illustration 2, Start and Ending Addresses for Switch A						
		Actions Addresses		EP1	T1	T2
	Address	SW1	SW2			
	.. \ldots			Ending Address (0003)	milliseconds	milliseconds
Start Image	0001	Left switch's future address when switch A is pressed.	Right switch's future address when switch A is pressed.			
\ldots				\ldots	\ldots	
Ending Image	0003	Left switch's future address when end of loop	Right switch's future address when end of loop	Don't care	Don't care	Don't care

Illustration 3 shows a simple loop where images at addresses 0041 H through 0057 H are shown in sequence for two seconds each and will loop continuously until the switch associated with that particular address is pressed or the loop ends. When that switch is pressed the controller will set the left hand switch to address 0001 H and the right hand switch to address 006AH. If the loop ends before the switch is pressed the left switch will go to address 0059 H and the right switch will go to address 005 AH .

If SW1 and/or SW2 for the ending addresses are 0000H the loop will start again. Loops can overlap where, for instance, the left switch starts at address 0001 H and ends at 0005 H while the right switch starts at 0002 H and ends at 0006 H . The two loops will not interfere with each other.

Timers Operation:

Each switch has an independent timer; timer1 and timer2. Each timer value is the product of the two user defined variables T1 and T2 of the attributes. The formula for the timer value in millisecond is:

The timer value in $\mathrm{ms}=(\mathrm{T} 1) \mathrm{x}(\mathrm{T} 2)$
Each of these variables can have a value between 01 H to FFH (1 to 255). The timer for a given switch will be disabled if the T1 value is set to zero. For T2 the zero value is defined as 256 . Pressing either switch will reset the timers for both switches. Holding down either switch will prevent both timers from running. The controller takes 35 ms to send an image to each OLED for a maximum of 28 images per second on one OLED.

Attribute Block:

An attribute is handled as a block of 8 bytes.

Byte	Description
1	High byte of action address for OLEDModule \#1.
2	Low byte of action address for OLEDModule \#1.
3	High byte of action address for OLEDModule \#2.
4	Low byte of action address for OLEDModule \#2.
5	High byte of end address.
6	Low byte of end address.
7	Timer B
8	Timer A

Image Block:

An image is handled as a block of 6144 bytes. Each pixel requires two bytes in the 565 format as shown below.

B4	B3	B2	B1	B0	G5	G4	G3	G2	G1	G0	R4	R3	R2	R1	R0
B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0

The current version of the controller can only handle 64x48 format images. The OLED switches show the full image while the OLED displays will only show the middle 52 pixels of the top 36 lines of the image. The image is handled from top left to bottom right as shown below. Byte 1 and byte 2 are for color of top left pixel. Byte 6143 and byte 6144 are for color of bottom right pixel.

Byte	Description
$1-128$	First line of image
$129-256$	Second line of image
\bullet	
\bullet	
\bullet	
$5889-6016$	47 th line of image
$6017-6144$	$48^{\text {th }}$ line of image

5. Programming the IS-Dev Kit-7

The IS-Dev Kit-7 communicates via RS232 with any communication software. The commands and protocol will be explained in the sections 6 and 7.
This section covers programming the Dev Kit using the Universal Communicator.
The Universal Communicator handles all the communication protocol. Once the images are created, they can be imported to the Universal Communicator. The Universal Communicator allows attributes information to be inputted. Once the images and attribute information are created, they can be downloaded to the Dev Kit. The Dev Kit will function as programmed after the next power up or reset.
For how to use the software please refer to Universal Communicator documentation.

Creating OLED Images for Universal Communicator

The OLED SmartSwitch has a RGB color OLED display with a resolution of 64×48 pixels. The OLED SmartDisplay has a RGB color OLED display with a resolution of 52×36 pixels. Images can be created graphically or by cropping from a picture using graphic software such as Paint, Photoshop, etc. The images must be saved as 64×4824-bit color bitmap files. The image files should be saved in a single folder. Universal Communicator imports the files from the folder in alphanumeric order according to the file names. The file names should be selected so the order of images will be as desired.
The Universal Communicator displays the image file names and assigned addresses for the controller. (Screen Shot 1) These files can be downloaded to the controller.

Screen Shot 1, Universal Communicator Batch Picture Download Window

Input/programming the

7850 East Gelding Drive • Scottsdale, AZ 85260-3420

Attribute information

After importing the images into the Universal Communicator (Screen shot 1), Make sure the order of the images are as desired so all the loops for sequential changes based on timer are sequential.
You can select "Edit Attributes" from Batch Picture Download screen (Screen shot 1).Universal Communicator display "Batch Attributes Download screen and allows input of the attributes information. (Screen shot 1)

All the numeric inputs only allow HEX format. The addresses are four digit long HEX values from 0001H to FFFFH (1 to 65,535 decimal). The Universal Communicator lists the addresses in HEX format. These addresses can be used for attribute information without knowing HEX numbering. For HEX numbering and conversion between HEX and decimal please refer to the appendix.
The image name and the address as well as attribute information are displayed. The attribute information can be modified by the user.

Screen Shot 2, Universal Communicator Batch Attribute Download Window

An Example of How Attributes Work

The following demonstrate the way attributes of Screen Shot 2 (above) works. The Illustration 3 (below) visually demonstrates the way these attributes work.
The blue is the left switch action, the green is the right switch action, the dashed red line is the timer action.

When the Dev Kit enters the Main Operational Mode the images at the address 0001 H and 0010 H are displayed. The Attribute Block at address 0001 H and 0010 H become active.
Attribute Block at address 0001 H

> Left Right

Current Switch Switch End
Address Address Address Address Timer1 Timer2
$0001 \mathrm{H} \quad 0002 \mathrm{H} \quad 0000 \mathrm{H} \quad 0000 \mathrm{H} \quad 00 \mathrm{H} \quad 00 \mathrm{H}$

Since the Timerl is zero the timer does not run so there will be no changes based on the timer. The image at the address 0001 H is displayed until a switch is pressed:

Pressing the Left Switch

Attribute	Block at address 0001H				
Left	Right				
Current	Switch	Switch	End		
Address	Address	Address	Address	Timer1	Timer2
0001 H	0002 H	0000 H	0000 H	00 H	00 H

If the left switch is pressed, the image at address 0002 H is displayed on the left switch and the Attribute Block of address 0002 H becomes active. The display on the right switch does not change as it is set to zero.

Attribute Block at address 0002H
Left Right
Current Switch Switch End
Address Address Address Address Timer1 Timer2
$0002 \mathrm{H} \quad 0000 \mathrm{H} \quad 0000 \mathrm{H} \quad 0005 \mathrm{H} \quad \mathrm{FFH} \quad 01 \mathrm{H}$
Since the switch addresses are zero there will be no changes if a switch gets pressed. The timer is 255 ms . If there is no switch activity for 255 ms the timer expires causing the next image, 0003 H , to be displayed. This continues until images 0004 H and 0005 H are also displayed. When the timer expires at address 0005 H the address is equal to the End Address. The Left Switch Address from the Attribute Block of 0005H is then checked. Please note the attribute information of addresses 0003 H and 0004 H are not used.

Attribute Block at address 0005H

| | Left | Right | | | |
| :--- | :---: | :---: | :---: | :--- | :--- | :--- |
| Current | Switch | Switch | End | | |
| Address | Address | Address | Address | Timer1 | Timer2 |
| 0005 H | 0000 H | 0000 H | 0000 H | 00 H | 00 H |

The image at address 0001 H is displayed and the Attribute Block of address 0001 H becomes active. Notice that the other attributes within the Attribute Block of address 0005 H are ignored.

Pressing the Right Switch

Attribute Block at address 0010H
Left Right
Current Switch Switch End
Address Address Address Address Timer1 Timer2
$0010 \mathrm{H} \quad 0003 \mathrm{H} \quad 0011 \mathrm{H} \quad 0000 \mathrm{H} \quad 00 \mathrm{H} \quad 00 \mathrm{H}$

If the right switch is pressed, the image at address 0003 H is displayed on the left switch and the image at address 0011 H is displayed on the right switch. The Attribute Blocks of the address 0003 H and 0011 become active.

Attribute Block at address 0003H
Left Right
Current Switch Switch End
Address Address Address Address Timer1 Timer2
$0003 \mathrm{H} \quad 0000 \mathrm{H} \quad 0000 \mathrm{H} \quad 0006 \mathrm{H}$ FFH 02 H

The timer is 510 ms . If there is no switch activity for 510 ms the timer expires causing the next image, 0004 H , to be displayed. This continues until images 0005 H and 0006 H are also displayed. When the timer expires at address 0006 H the address is equal to the End Address. The Left Switch Address from the Attribute Block of 0006 H is then checked.

Attribute Block at address 0006H
Left Right

Current	Switch	Switch	End		
Address	Address	Address	Address	Timer1	Timer2
0006 H	0000 H	0000 H	0000 H	00 H	00 H

Since the Left Switch Address is zero then the image at address 0003H is displayed and the Attribute Block of address 0003 H becomes active. The display on the right switch does not change as it is set to zero.

Please note when a timer causes a new image to be displayed the Attribute Block of the beginning image stays active. All other Attribute Blocks within the loop are ignored except the Left Switch Address when the End Address is active.

6. Operational Details

Power-Up Sequence (Steps 1,2,3)

Upon power-up or reset, controller performs the following steps:
Step 1: Check the status of Mode Select Switch for mode of operation. Initialize according to selected mode.
Step 2: Display dim and bright on the two switches and allow for adjustments of the brightness. There are 16 brightness levels (0 to F). When the internal timer is expired, the controller proceeds to Step 3. Every time a switch is pressed, the timer gets reset. If a switch is held depressed the timer does not run. Switch activity are not reported to host.

Step 3: Transmit 11H to host via RS232. Check the microSD for set up value. If set up values are programmed, get the start address for switch 1, start address for switch 2 and the flag byte. If the set up values are not programmed use the default values: start address for switch $1=$ current address for switch $1=0001 \mathrm{H}$, start address for switch $2=$ current address for switch $2=0010 \mathrm{H}$ and flag byte $=80 \mathrm{H}$.

Step 4:

A. If attributes for start address of switch 1 are programmed, get the attribute for switch 1 .
B. If attributes for start address of switch 1 are not programmed, use the default: Switch 1 Action address for switch $1=0000 \mathrm{H}$, switch 1 action address for switch $2=0000 \mathrm{H}$, end address for switch $1=0010 \mathrm{H}$ Timer2 for switch $1=00 \mathrm{H}$ timer1 for switch $1=0 \mathrm{AH}$.
C. If attributes for start address of switch 2 are programmed, get the attribute for switch 2 .
D. If attributes for start address of switch 2 are not programmed, use the default: Switch 2 action address for switch $1=0000 \mathrm{H}$, switch 2 action address for switch $2=0000 \mathrm{H}$, end address for switch $2=0020 \mathrm{H}$ Timer 2 for switch $2=00 \mathrm{H}$ timer 1 for switch $2=0 \mathrm{DH}$,

Step 5: Send the pictures from microSD to OLED module according to start addresses.

Main Operational Mode

Step 6:

A. If the switch 1 is pressed, process it. (see details below)
B. If the switch 2 is pressed, process it. (see details below)
C. If the timer for switch 1 is expired, process it. (see details below)
D. If the timer for switch 2 is expired, process it. (see details below)
E. If the switch 1 is released: Transmit B1H to host if flag is enabled.
F. If the switch 2 is released: Transmit B2H to host if flag is enabled.
G. If there is update flag for switch 1 is set, process it.
H. If there is update flag for switch 2 is set, process it.
I. Checks the host communication buffer for data. If there is data, process them. (For detail see Communication Protocol)
J. Go to step 6 A.

Detailed Explanation of Operation Step 6

Step 6A: If switch 1 is pressed then:

1. Transmit 81 H to host if flag is enabled.
2. If switch 1 action address for switch 1 is not equal zero and the attribute for the location is programmed then:
a. Start address for switch $1=$ switch 1 action address for switch 1 .
b. Current address for switch $1=$ switch 1 action address for switch 1 .
c. Get the attributes and put the values for switch 1 action address for switch 1 , switch 1 action address for switch 2 , end address for switch 1 and timers for switch 1.
d. Set update flag for switch 1 .
3. If switch 1 action address for switch 1 is equal zero or the attribute for the location is not programmed then take no action.
4. If switch 1 action address for switch 2 is not equal zero and the attribute for the location is programmed then:
a. Start address for switch $2=$ switch 1 action address for switch 2 .
b. Current address for switch $2=$ switch 1 action address for switch 2 .
c. Get the attributes and put the values for switch 2 action address for switch 1 , switch 2 action address for switch 2 , end address for switch 2 and timers for switch 2.
d. Set update flag for switch 2.
5. If switch 1 action address for switch 2 is equal zero or the attribute for the location is not programmed then take no action.

Step 6B: If switch 2 is pressed then:

1. Transmit 82 H to host if flag is enabled.
2. If switch 2 action address for switch 1 is not equal zero and the attribute for the location is programmed then:
a. Start address for switch $1=$ switch 2 action address for switch 1 .
b. Current address for switch $1=$ switch 2 action address for switch 1 .
c. Get the attributes and put the values for switch 1 action address for switch 1 , switch 1 action address for switch 2 , end address for switch 1 and timers for switch 1.
d. Set update flag for switch 1 .
3. If switch 2 action address for switch 1 is equal zero or the attribute for the location is not programmed then take no action.
4. If switch 2 action address for switch 2 is not equal zero and the attribute for the location is programmed then:
e. Start address for switch $2=$ switch 2 action address for switch 2 .
f. Current address for switch $2=$ switch 2 action address for switch 2 .
g. Get the attributes and put the values for switch 2 action address for switch 1 , switch 2 action address for switch 2, end address for switch 2 and timers for switch 2.
h. Set update flag for switch 2 .
5. If switch 2 action address for switch 2 is equal zero or the attribute for the location is not programmed then take no action.

Step 6C: If timer for switch 1 expires then:

1. Transmit 83 H to host if flag is enabled.
2. Increment current address for switch 1 .
3. If current address for switch 1 is not equal ((end address for switch 1$)+1)$ then:
i. Transmit FDH and current address for switch 1 to host if flag is enabled.
j. Set update flag for switch 1.
4. If current address for switch 1 is equal ((end address for switch 1$)+1$) then:
k. Read the Attributes for end address location.
i. If end location action address for switch 1 is equal zero then put current address $=$ start address and set update flag for switch 1 .
ii. If end location action address for switch 1 is not equal zero then:
5. Start address for switch $1=$ end address action address for switch 1 .
6. Current address for switch $1=$ end address action address for switch 1 .
7. Get the attributes and put the values for switch 1 action address for switch 1 , switch 1 action address for switch 2 , end address for switch 1 and timers for switch 1.
8. Set update flag for switch 1 .
iii. If end location action address for switch 2 is equal zero then take no action.
iv. If end location action address for switch 2 is not equal zero then:
9. Start address for switch $2=$ end address action address for switch 2 .
10. Current address for switch $2=$ end address action address for switch 2 .
11. Get the attributes and put the values for switch 2 action address for switch1, switch 2 action address for switch 2 , end address for switch 2 and timers for switch 2.
12. Set update flag for switch 2 .

Step 6D: If timer for switch 2 is expired then:

1. Transmit 84 H to host if flag is enabled.
2. Increment current address for switch 2 .
3. If current address for switch 2 is not equal ((end address for switch 2$)+1$) then:
4. Transmit FEH and current address for switch 2 to host if flag is enabled.
m. Set update flag for switch 2 .
5. If current address for switch 2 is equal ((end address for switch 2$)+1$) then:
n. Read the attributes for end address location for switch 2.
o. If end location action address for switch 2 is equal zero then put current address for switch $2=$ start address for switch 2 and set update flag for switch 2.
p. If end location action address for switch 2 is not equal zero then:
i. Start address for switch $2=$ end address action address for switch 2.
ii. Current address for switch $2=$ end address action address for switch 2 .
iii. Get the attributes and put the values for switch 2 action address for switch 1 , switch 2 action address for switch 2 , end address for switch 2 and timers for switch 2 .
iv. Set update flag for switch 2.
q. If end location action address for switch 1 is equal zero then take no action.
r. If end location action address for switch 1 is not equal zero then:
i. Start address for switch $1=$ end location action address for switch 1 .
ii. Current address for switch $1=$ end location action address for switch 1 .
iii. Get the attributes and put the values for switch 1 action address for switch 1 , switch 1 action address for switch 2 , end address for switch 1 and timers for switch 1 .
iv. Set update flag for switch 1.

Step 6E: If the switch 1 is released: Transmit B1H to host if flag is enabled.
Step 6F: If the switch 2 is released: Transmit B2H to host if flag is enabled.
Step 6G: If update flag for switch 1 is set then:

1. Clear the switch 1 update flag.
2. Transmit FDH and current address for switch 1 to host if flag is enabled.
3. Send the picture from microSD to OLED module 1 according to current address for switch 1 .

Step 6H: If update flag for switch 2 is set then:

1. Clear the switch 2 update flag.
2. Transmit FEH and current address for switch 2 to host if flag is enabled.

Send the picture from microSD to OLED module 2 according to current address for switch 2.
Step 6I: Checks the host communication buffer for data. If there is data, process them. (For detail see Communication Protocol)

Step 6J: Go to step 6A.

7. Communication Protocol

Communication initiated by Host

The controller communicates with the host via RS232 serial communication ($57.6 \mathrm{~K}, 1$ start bit, 8 bit, 1 stop bit). The controller receives the data via an interrupt routine that places the data on the circular receive buffer. When the controller detects data in the circular receive buffer, the controller reads one byte and executes the following:
A. If the byte is a command, the controller transmits a 61 H and executes the subroutine for the command and upon completion of command the controller transmits 79 H .
B. If the byte is not a command, it is ignored.

When the controller executes a subroutine and expects additional information:
A. A timer is set. If the expected data byte is not received in 64 ms , the controller transmits 6 CH 6 EH and terminates the routine.
B. If the byte value is not acceptable (invalid range, option, etc.), the controller transmits 6EH and terminates the routine.

Commands are one byte in the range of 20 H to 2 FH and 01 H and are transmitted in hex format. The proper format for all command options and data is specified for each command. See Section 7.

Communication initiated by the IS-Dev Kit-7

The Dev Kit transmits codes to host via RS232 based on activities stated below. Many of these reporting can be enable/disabled by the flag setup.
A. Left switch press is reported as 81 H
B. Left switch release is reported as B1H
C. Right switch press is reported as 82 H
D. Right switch release is reported as B 2 H
E. Left Timer expire is reported as 83 H
F. Right Timer expire is reported as 84 H
G. Upon changing the image on left switch, the image address is reported as FDH followed by the address in HEX so total of 3 bytes transmitted for each image change.
H. Upon changing the image on right switch, the image address is reported as FEH followed by the address in HEX so total of 3 bytes transmitted for each image change.
I. If there is a communication problem between microcontroller and the microSD flash, the controller will transmit 6 FH to host for each communication failure.

8. Commands

Commands to the controller

Command to reboot the controller

The command reboots the controller to power-up state.

$$
\text { command format: } \quad \mathbf{2 4 H}
$$

transmit format: (xxH)

Command to check communication

The command is used to check if the controller is on-line.
command format:
01H
transmit format:
(xxH)

The controller transmits back 61H to the host.
Command to query controller for mode, controller, and firmware version
This command queries the controller for the mode as set by the Mode Select Switch, the controller name, and the firmware version installed.

```
command format: 26H 52H 58H
transmit format: (xxH) (xxH) (xxH)
```

Example: The command is sent. The controller responds with the following:

61	34	43 4C 30 31	12	79
61 H	[mode]	[Controller name]	[version]	79 H

[mode] one byte. 33H indicating OLED module mode or 34H indicating OLED display mode.
[Controller name] 4 bytes. 43H 4CH 30H 31H (CL01)
[version] one byte. 11H (version 1.1)

Command to query controller for firmware version

This command queries the controller for the firmware version installed.

command format:	$\mathbf{2 6 H}$	15 H
transmit format:	(xxH)	(xxH)

Example: The command is sent. The controller responds with the following:

61	11
61 H	[version]

[version] one byte. 11H (version 1.1)

Command for temporarily setting the timers

This command sets both the left and right switch timers.

command format:	$\mathbf{2 6 H}$	51 H	55 H	[left timer]
transmit format:	(xxH)	(xxH)	(xxH)	(xxH)

[left timer] timer for left switch. Two bytes send in HEX format.
[right timer] timer for right switch. Two bytes send in HEX format.
The command sets the timers with the given values and activates them. If either switch is pressed or the timers expire the values are lost. These values are over written by the values stored on the microSD flash in the current address.
This command is useful for determining the best values for animations or movies.

Command to disable the timers and switch execution

This command disables the timers and switch execution.

command format:	$\mathbf{2 6 H}$	51 H	5 AH
transmit format:	(xxH)	(xxH)	(xxH)

The controller disables the timers and switch execution upon receiving this command. However, the switches are still scanned and reported. They are enabled upon reboot/power up or by command from host.

Command to enable the timers and switch execution
This command enables the timers and switch execution.

command format:	$\mathbf{2 6 H}$	51 H	65 H
transmit format:	(xxH)	(xxH)	(xxH)

The controller enables the timers and switch execution upon receiving this command.
Command to turn the switch display off
This command turns off the OLED module display.
command format: $\quad \mathbf{2 6 H} \quad 51 \mathrm{H} \quad 69 \mathrm{H}$
transmit format: (xxH) (xxH) (xxH)

Command to turn the switch display on

This command turns on the OLED module display.
command format: $\quad \mathbf{2 6 H} \quad 51 \mathrm{H} \quad 66 \mathrm{H}$
transmit format: (xxH) (xxH) (xxH)

7850 East Gelding Drive • Scottsdale, AZ 85260-3420

Command to dim switch display

This command dims the OLED module display.
command format: $\quad \mathbf{2 6 H} \quad 51 \mathrm{H} \quad 71 \mathrm{H}$
transmit format: $\quad(\mathrm{xxH})(\mathrm{xxH})(\mathrm{xxH})$

Command to turn the OLED voltage off
This command turns off the 16 V supply to the OLED module.

```
command format: 26H 51H 74H
transmit format: (xxH) (xxH) (xxH)
```


Command to turn the OLED voltage on

This command turns on the 16 V supply to the OLED module.

```
command format: 26H 51H 75H
transmit format: (xxH) (xxH) (xxH)
```

Note: This command should only be used when the OLED displays are in the off mode.

7850 East Gelding Drive • Scottsdale, AZ 85260-3420

Commands that disable switch and timer execution

Upon transmitting any of the following commands, the timers stop running and attributes for the switches activity do not execute. The switches are still scanned and reported. The attributes execution is enabled upon reboot/power up or by command from host.
The reason for disabling attribute execution is for faster download of images and attribute as well as command to check the image at any address.

Command to download setup data

This command downloads the set-up data. These set up are saved on microSD

command format:	$\mathbf{2 A H}$	$[00 \mathrm{H}]$	$[00 \mathrm{H}]$	$[55 H]$	$[$ flag	[address1]	[address2]	[reserved]
transmit format:	(xxH)	(xxAH)	(xxAH)	(xxAH)	(xxAH)	(xxAH)	$(x x A H)$	$(x x A H)$

[flag] is one byte sent in ASCII HEX format. (Detail below)
[address 1] is two bytes with value of 0001 H to FFFFH sent in ASCII HEX format. This is the address for the image that switch 1 displays upon power up/reboot.
[address 2] is two bytes with value of 0001H to FFFFH sent in ASCII HEX format. This is the address for the image that switch 2 displays upon power up/reboot.
[reserved] is two bytes sent in ASCII HEX format. This is for future use. Customer could use the last byte for storing the data version.

This set up data can be read using the attribute upload command.
The controller disables the timers and switch execution upon receiving this command. However, the switches are still scanned and reported. They are enabled upon reboot/power up or by command from host.

Flag Byte Default value $=\mathbf{8 0 H}$

Bit	Enable Value	Flag	Controller action when flag is set
B0	0	Buzzer	Beeper sound for switch press
B1	0	61 H flag	61H is transmitted in response to command.
B2	0	79 H flag	79 H is transmitted upon completion of command.
B3	0	Switch release report flag	Switch release are reported
B4	0	6EH flag	6CH/6EH is transmitted if there is any error during communication to host.
B5	0	Timers expire report flag	Timers expiration are reported
B6	0	Switch press report flag	Switch presses are reported
B7	0	Address change report flag	Newest address is reported for each switch

Example: 2A30303030 35353830303030313030314630303030 sets all the flags on, points left switch to address 0001 H and right switch to address 001 FH . The flag takes affect when the controller is reset.

Command to download an image

This command downloads an image from the host to the EEPROM location.
command format: $\mathbf{2 8 H}$ [address] [image]
transmit format: (xxH) (xxAH) (xxAH)
[address] is two bytes with value of 0001H to FFFFH sent as ASCII HEX format. [image] is 6144 bytes transmit in ASCII HEX format.

Command to upload an image

This command uploads an image from the microSD location to the host.

```
command format: 29H [address]
transmit format: (xxH) (xxAH)
```

[address] is two bytes with value of 0001 H to FFFFH sent as ASCII HEX format.
The controller transmits back the image (6144 bytes) in HEX format.

Command to download attribute block

This command downloads an attribute block from the host to the EEPROM location.
command format: 2AH [address] [attribute block]
transmit format: (xxH) (xxAH) (xxAH)
[address] is two bytes with value of 0001H to FFFFH sent as ASCII HEX format. [attribute block] is eight bytes transmit in ASCII HEX format.

The address and attribute block are saved at this address. When the controller reads the attribute block it compares the requested address to the saved address and if they do not match controller knows that the attribute block is not programmed and ignores it.

Command to upload an attribute block

This command uploads an attribute block from the EEPROM location to the host.

```
command format: 2BH [address]
transmit format: (xxH) (xxAH)
```

[address] is two bytes with value of 0001H to FFFFH sent as ASCII HEX format.
The controller transmits back the saved address and [Attribute block] in hex format.

