

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1.1W AUDIO POWER AMPLIFIER WITH ACTIVE-HIGH STANDBY MODE

August 2013

GENERAL DESCRIPTION

The IS31AP4996 has been designed for demanding audio applications such as mobile phones and permits the reduction of the number of external components.

It is capable of delivering 1.1W of continuous RMS output power into an 8Ω load @ 5V.

An externally-controlled standby mode reduces the supply current to much less than $2\mu A$. It also includes internal thermal shutdown protection.

The unity-gain stable amplifier can be configured by external gain setting resistors.

FEATURES

- Operating from V_{CC} = 2.7V ~ 5.5V
- 1.1W output power @ V_{CC} = 5V, THD+N= 1%,
 f = 1kHz, with 8Ω load
- Ultra-low consumption in standby mode (much less than 2μA)
- 56dB PSRR @217Hz in grounded mode
- Near-zero click-and-pop
- Ultra-low distortion (0.074%@0.5W, 1kHz)
- SOP-8 and MSOP-8 package

APPLICATIONS

- Mobile phones
- PDAs
- Portable electronic devices
- Notebook computer

TYPICAL APPLICATION CIRCUIT

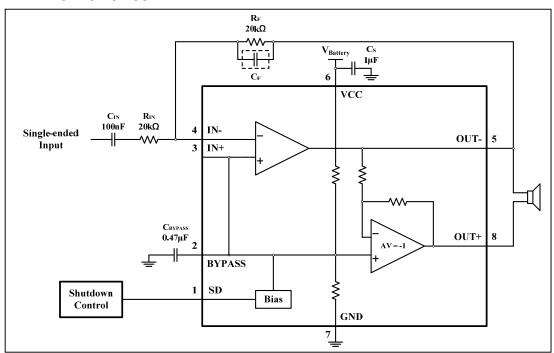


Figure 1 Typical Application Circuit

IS31AP4996

PIN CONFIGURATION

Pin Configuration (Top View)	Pin Configuration (Top View)		
SD	8 OUT+ 7 GND 6 VCC 5 OUT-		
	SD		

PIN DESCRIPTION

No.	Pin	Description	
1	SD	The device enters shutdown mode when a high level is applied on this pin.	
2	BYPASS	Bypass capacitor pin which provides the common mode voltage ($V_{\text{CC}}/2$).	
3	IN+	Positive input of the first amplifier.	
4	IN-	Negative input of the first amplifier, receives the audio input signal. Connected to the feedback resistor R_{F} and to the input resistor R_{IN} .	
5	OUT-	Negative output of the IS31AP4996. Connected to the load and to the feedback resistor R_{F} .	
6	VCC	Positive analog supply of the chip.	
7	GND	Ground.	
8	OUT+	Positive output of the IS31AP4996. Connected to the load.	

ORDERING INFORMATION Industrial Range: -40°C to +85°C

Order Part No.	Package	QTY/Reel
IS31AP4996-GRLS2-TR	SOP-8, Lead-free	2500
IS31AP4996-SLS2-TR	MSOP-8, Lead-free	2500

Copyright © 2013 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products. Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and

c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

IS31AP4996

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply voltage, V _{CC}	-0.3V ~ +6.0V
Voltage at any input pin	$-0.3V \sim V_{CC} + 0.3V$
Maximum junction temperature, T _{JMAX}	150°C
Storage temperature range, T _{STG}	−65°C ~ +150°C
Operating temperature range, T _A	−40°C ~ +85°C
Maximum power dissipation, SOP-8(25°C/85°C) (Note 2)	720mW/380mW
MSOP-8(25°C/85°C)	590mW/310mW

Note 1: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: Thermal simulation @ 25°C /85°C ambient temperature, still air convection, 2s2p boards according to JESD51. The Pd (max by package) is evaluated by (Tjmax-Ta)/Theta-Ja.

ELECTRICAL CHARACTERISTICS

The following specifications apply for C_{IN} = 0.1 μ F, R_{IN} = R_F = 20 $k\Omega$, C_{BYPASS} = 0.47 μ F, unless otherwise specified. Limits apply for T_A = 25°C. V_{CC} =5V (Note 3 or specified)

Symbol	Parameter	Condition	on	Min.	Тур.	Max.	Unit
I _{CC}	Quiescent power supply current	Io = 0A, no Load			3.0		mA
I _{SD}	Standby current	$V_{SD} = V_{CC}, R_L = \infty$				2	μΑ
V _{SD_H}	Shutdown voltage input high	V _{CC} = 5.5V		1.4			V
V _{SD_L}	Shutdown voltage input low	V _{CC} = 2.7V				0.4	V
Vos	Output offset voltage					15	mV
V _{OH}	Output high voltage	V _{CC} =3.3V~5.0V, I _C	_{DUT} = 75mA		V _{CC} -0.1		V
V _{OL}	Output low voltage	V _{CC} =3.3V~5.0V, I _C	_{DUT} = 75mA		0.1		V
I _{MAX}	Maximum output current				500		mA
Do	Output nouser (90)	THD+N = 1%; f = 1	1kHz		1.15		14/
Po	Output power (8Ω)	THD+N = 10%; f =	: 1kHz		1.40		W
t _{WU}	Wake-up time (Note 4)	$C_{BYPASS} = 0.47 \mu F$			100	250	ms
THD+N	Total harmonic distortion+noise (Note 4)	Po = 0.5Wrms; f = 1kHz			0.074		%
DCDD	Power supply rejection ratio (Note 4)	V rippie p-p 200111V	f = 217Hz		56		٩D
PSRR			f = 1kHz		68		dB

The following specifications apply for C_{IN} = 0.1 μ F, R_{IN} = R_F = 20 $k\Omega$, C_{BYPASS} = 0.47 μ F, unless otherwise specified. Limits apply for T_A = 25°C. V_{CC} =3V (Note 3 or specified)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
I _{cc}	Quiescent power supply current	Io = 0A, no Load		2.2		mA
I _{SD}	Standby current	V _{SD} = V _{CC} , R _L = ∞			2	μΑ
Po Outp	Output power (8Ω)	THD+N = 1%; f = 1kHz		380		- mW
		THD+N = 10%; f = 1kHz		490		
t _{WU}	Wake-up time (Note 4)	C _{BYPASS} = 0.47µF		90	200	ms
THD+N	Total harmonic distortion+noise (Note 4)	Po = 0.3Wrms; f = 1kHz		0.076		%

Note 3: Production testing of the device is performed at 25°C. Functional operation of the device and parameters specified over other temperature range, are guaranteed by design, characterization and process control.

Note 4: Guaranteed by design.

TYPICAL PERFORMANCE CHARACTERISTIC

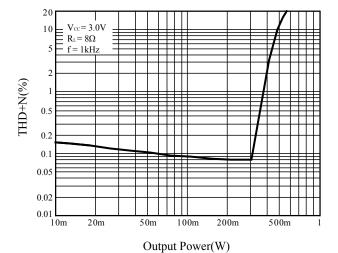


Figure 2 THD+N vs. Output Power

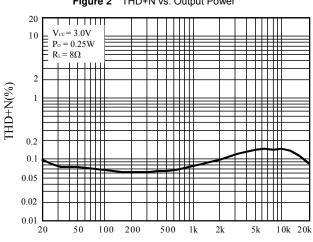


Figure 4 THD+N vs. Frequency

Frequency(Hz)

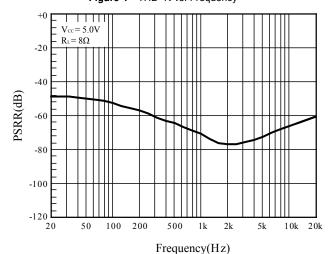
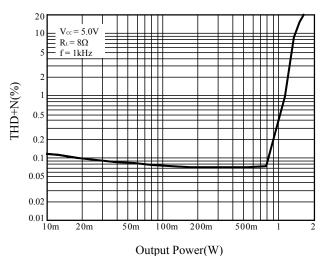



Figure 6 PSRR vs. Frequency

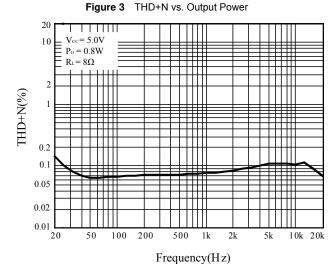


Figure 5 THD+N vs. Frequency

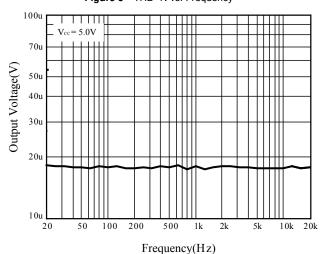


Figure 7 Noise Floor

IS31AP4996

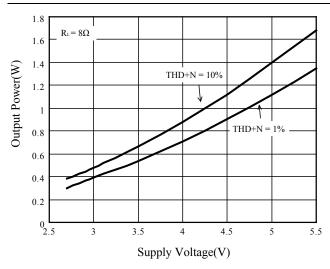


Figure 8 Output Power vs. Power Supply

ISSI

APPLICATION INFORMATION

BTL CONFIGURATION PRINCIPLE

The IS31AP4996 is a monolithic power amplifier with a BTL output type. BTL (bridge tied load) means that each end of the load is connected to two single-ended output amplifiers. Thus, we have:

Single-ended output $1 = V_{OUT+} = V_{OUT}(V)$

Single ended output $2 = V_{OUT} = -V_{OUT}(V)$

and

$$V_{OUT+} - V_{OUT-} = 2V_{OUT} (V)$$

The output power is:

$$P_{OUT} = \frac{(2V_{OUT_{RMS}})^2}{R_I}$$

For the same power supply voltage, the output power in BTL configuration is four times higher than the output power in single ended configuration.

GAIN IN A TYPICAL APPLICATION SCHEMATIC

The typical application schematic is shown in Figure 1.

In the flat region (no C_{IN} effect), the output voltage of the first stage is (in Volts):

$$V_{OUT-} = (-V_{IN}) \frac{R_F}{R_{DI}}$$

For the second stage: $V_{OUT+} = -V_{OUT-}(V)$

The differential output voltage is (in Volts):

$$V_{OUT+} - V_{OUT-} = 2V_{IN} \frac{R_F}{R_{IV}}$$

The differential gain, G_V, is given by:

$$G_{v} = \frac{V_{OUT+} - V_{OUT-}}{V_{IN}} = 2\frac{R_{F}}{R_{IN}}$$

 $V_{\text{OUT-}}$ is in phase with V_{IN} and $V_{\text{OUT+}}$ is phased 180° with V_{IN} . This means that the positive terminal of the loudspeaker should be connected to $V_{\text{OUT+}}$ and the negative to $V_{\text{OUT-}}$.

LOW AND HIGH FREQUENCY RESPONSE

In the low frequency region, C_{IN} starts to have an effect. C_{IN} forms with R_{IN} a high-pass filter with a -3dB cut-off frequency. f_{CL} is in Hz.

$$f_{CL} = \frac{1}{2\pi R_{IN} C_{IN}}$$

In the high frequency region, you can limit the bandwidth by adding a capacitor (C_F) in parallel with R_F . It forms a low-pass filter with a -3dB cut-off frequency. f_{CH} is in Hz.

$$f_{CH} = \frac{1}{2\pi R_F C_F}$$

DECOUPLING OF THE CIRCUIT

Two capacitors are needed to correctly bypass the IS31AP4996: a power supply bypass capacitor C_S and a bias voltage bypass capacitor C_{BYPASS} .

 $C_{\rm S}$ has particular influence on the THD+N in the high frequency region (above 7kHz) and an indirect influence on power supply disturbances. With a value for $C_{\rm S}$ of 1µF, you can expect THD+N levels similar to those shown in the datasheet.

In the high frequency region, if C_S is lower than $1\mu F$, it increases THD+N and disturbances on the power supply rail are less filtered.

On the other hand, if C_S is higher than $1\mu F$, those disturbances on the power supply rail are more filtered.

C_{BYPASS} has an influence on THD+N at lower frequencies, but its function is critical to the final result of PSRR (with input grounded and in the lower frequency region).

If C_{BYPASS} is lower than 0.47µF, THD+N increases at lower frequencies and PSRR worsens.

If C_{BYPASS} is higher than 0.47µF, the benefit on THD+N at lower frequencies is small, but the benefit to PSRR is substantial.

Note that C_{IN} has a non-negligible effect on PSRR at lower frequencies. The lower the value of C_{IN} , the higher the PSRR is.

WAKE-UP TIME (twii)

When the standby is released to put the device on, the bypass capacitor C_{BYPASS} will not be charged immediately. As C_{BYPASS} is directly linked to the bias of the amplifier, the bias will not work properly until the C_{BYPASS} voltage is correct. The time to reach this voltage is called wake-up time or t_{WU} and specified in the electrical characteristics table with C_{BYPASS} = $0.47\mu\text{F}.$

POP PERFORMANCE

Pop performance is intimately linked with the size of the input capacitor C_{IN} and the bias voltage bypass capacitor C_{BYPASS} .

The size of C_{IN} is dependent on the lower cut-off frequency and PSRR values requested. The size of C_{BYPASS} is dependent on THD+N and PSRR values requested at lower frequencies.

Moreover, $C_{\mbox{\scriptsize BYPASS}}$ determines the speed with which the amplifier turns on.

CLASSIFICATION REFLOW PROFILES

Profile Feature	Pb-Free Assembly
Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts)	150°C 200°C 60-120 seconds
Average ramp-up rate (Tsmax to Tp)	3°C/second max.
Liquidous temperature (TL) Time at liquidous (tL)	217°C 60-150 seconds
Peak package body temperature (Tp)*	Max 260°C
Time (tp)** within 5°C of the specified classification temperature (Tc)	Max 30 seconds
Average ramp-down rate (Tp to Tsmax)	6°C/second max.
Time 25°C to peak temperature	8 minutes max.

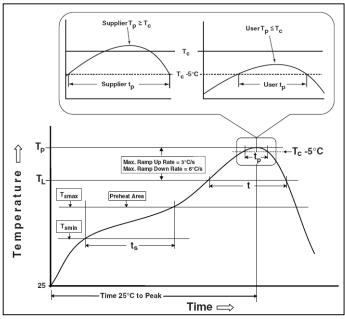
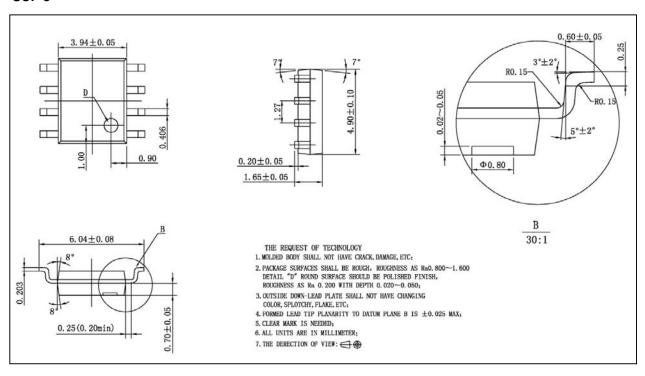
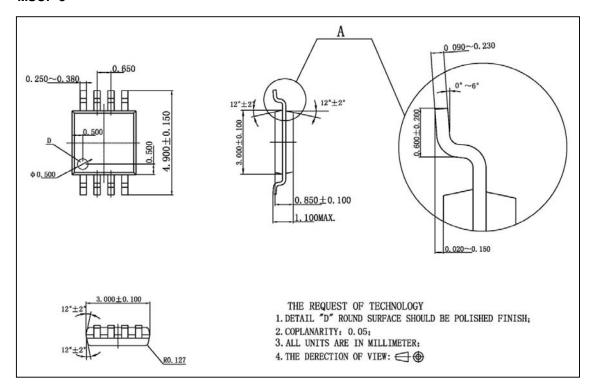



Figure 9 Classification Profile


PACKAGE INFORMATION

SOP-8

MSOP-8

