imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IS42/45S16100F, IS42VS16100F

512K Words x 16 Bits x 2 Banks 16Mb SDRAM

JUNE 2012

FEATURES

- Clock frequency: IS42/45S16100F: 200, 166, 143 MHz IS42VS16100F: 133, 100 MHz
- Fully synchronous; all signals referenced to a positive clock edge
- Two banks can be operated simultaneously and independently
- Dual internal bank controlled by A11 (bank select)
- Single power supply: IS42/45S16100F: VDD/VDDQ = 3.3V IS42VS16100F: VDD/VDDQ = 1.8V
- LVTTL interface
- Programmable burst length
 (1, 2, 4, 8, full page)
- Programmable burst sequence: Sequential/Interleave
- · 2048 refresh cycles every 32 ms
- Random column address every clock cycle
- Programmable CAS latency (2, 3 clocks)
- Burst read/write and burst read/single write operations capability
- Burst termination by burst stop and precharge command
- Byte controlled by LDQM and UDQM
- Packages 400-mil 50-pin TSOP-II and 60-ball BGA
- · Lead-free package option
- Available in Industrial Temperature

DESCRIPTION

ISSI's 16Mb Synchronous DRAM IS42S16100F, IS45S16100F and IS42VS16100F are each organized as a 524,288-word x 16-bit x 2-bank for improved performance. The synchronous DRAMs achieve highspeed data transfer using pipeline architecture. All inputs and outputs signals refer to the rising edge of the clock input.

ADDRESS TABLE

Parameter	IS42/45S16100F	IS42VS16100F		
Power Supply VDD/VDDQ	3.3V	1.8V		
Refresh Count	2K/32ms 2K/32ms			
Row Addressing	A0-A10			
Column Addressing	A0-A7			
Bank Addressing	A11			
Precharge Addressing	A10			

KEY TIMING PARAMETERS

Parameter	-5 ⁽¹⁾	-6 ⁽²⁾	-7 ⁽²⁾	-75 ⁽³⁾	-10 ⁽³⁾	Unit
CLK Cycle Time						
\overline{CAS} Latency = 3	5	6	7	7.5	10	ns
\overline{CAS} Latency = 2	10	10	10	10	12	ns
CLK Frequency						
\overline{CAS} Latency = 3	200	166	143	133	100	Mhz
\overline{CAS} Latency = 2	100	100	100	100	83	Mhz
Access Time from Clock						
CAS Latency = 3	5	5.5	5.5	6	7	ns
\overline{CAS} Latency = 2	6	6	6	8	8	ns

Notes:

- 1. Available for IS42S16100F only
- 2. Available for IS42S16100F and IS45S16100F only
- 3. Available for IS42VS16100F only

Copyright © 2012 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and

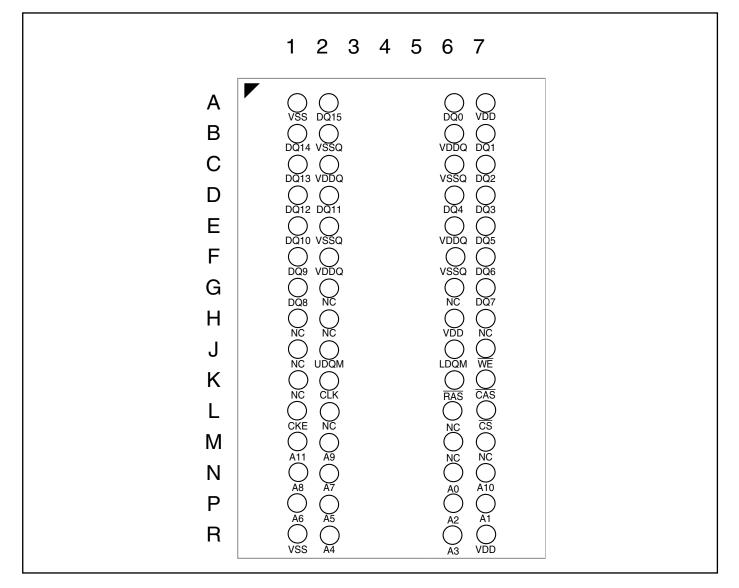
c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

PIN CONFIGURATIONS

50-Pin	TSOP	(Type II)
••••		

		49 🛄 DQ15
DQ1		48 🔲 DQ14
VSSQ [[47 🔲 VSSQ
DQ2	5	46 🔲 DQ13
DQ3	6	45 🔟 DQ12
	7	
DQ4 [[8	43 🗖 DQ11
DQ5 [[9	42 🔟 DQ10
VSSQ [[10	
DQ6	11 .	40 🔲 DQ9
DQ7	12	39 🔲 DQ8
	13	
	14	37 🔟 NC
WE		
		35 TT CLK
	1	34 🗍 СКЕ
	-	33 🗍 NC
A11 [[1	32 🗖 A9
A10 [[31 T A8
		30 TT A7
A1 [[29 TT A6
		28 TI A5
		27 TI A4
		26 🔲 VSS

PIN DESCRIPTIONS


A0-A11	Address Input
A0-A10	Row Address Input
A11	Bank Select Address
A0-A7	Column Address Input
DQ0 to DQ15	Data DQ
CLK	System Clock Input
CKE	Clock Enable
CS	Chip Select
RAS	Row Address Strobe Command

CAS	Column Address Strobe Command
WE	Write Enable
LDQM	Lower Bye, Input/Output Mask
UDQM	Upper Bye, Input/Output Mask
VDD	Power
VSS	Ground
VDDQ	Power Supply for DQ Pin
VSSQ	Ground for DQ Pin
NC	No Connection

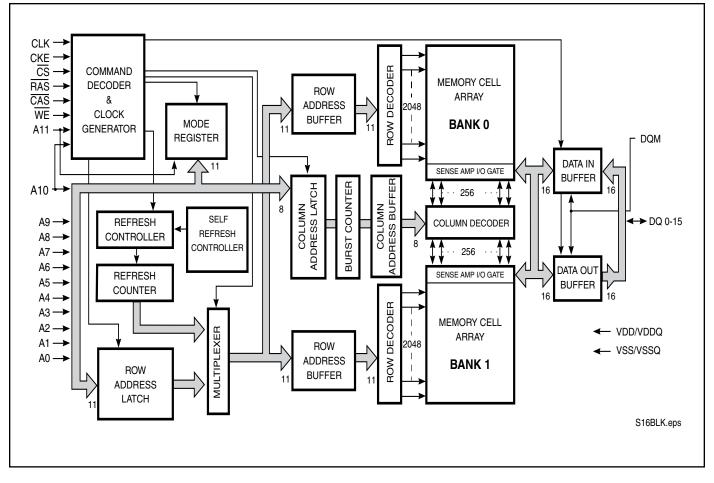
PIN CONFIGURATION

PACKAGE CODE: B 60 BALL TF-BGA (Top View) (10.1 mm x 6.4 mm Body, 0.65 mm Ball Pitch)

PIN DESCRIPTIONS

A0-A10	Row Address Input
A0-A7	Column Address Input
A11	Bank Select Address
DQ0 to DQ15	Data I/O
CLK	System Clock Input
CKE	Clock Enable
CS	Chip Select
RAS	Row Address Strobe Command
CAS	Column Address Strobe Command

WE	Write Enable
LDQM, UDQM	x16 Input/Output Mask
Vdd	Power
Vss	Ground
Vddq	Power Supply for I/O Pin
Vssq	Ground for I/O Pin
NC	No Connection



PIN FUNCTIONS

Pin No.	Symbol	Туре	Function (In Detail)
20 to 24 27 to 32	A0-A10	Input Pin	A0 to A10 are address inputs. A0-A10 are used as row address inputs during active command input and A0-A7 as column address inputs during read or write command input. A10 is also used to determine the precharge mode during other commands. If A10 is LOW during precharge command, the bank selected by A11 is precharged, but if A10 is HIGH, both banks will be precharged. When A10 is HIGH in read or write command cycle, the precharge starts automatically after the burst access. These signals become part of the OP CODE during mode register set command input.
19	A11	Input Pin	A11 is the bank selection signal. When A11 is LOW, bank 0 is selected and when high, bank 1 is selected. This signal becomes part of the OP CODE during mode register set command input.
16	CAS	Input Pin	\overline{CAS} , in conjunction with the \overline{RAS} and \overline{WE} , forms the device command. See the "Command Truth Table" item for details on device commands.
34	CKE	Input Pin	The CKE input determines whether the CLK input is enabled within the device. When is CKE HIGH, the next rising edge of the CLK signal will be valid, and when LOW, invalid. When CKE is LOW, the device will be in either the power-down mode, the clock suspend mode, or the self refresh mode. The CKE is an asynchronous input.
35	CLK	Input Pin	CLK is the master clock input for this device. Except for CKE, all inputs to this device are acquired in synchronization with the rising edge of this pin.
18	CS	Input Pin	The \overline{CS} input determines whether command input is enabled within the device. Command input is enabled when \overline{CS} is LOW, and disabled with \overline{CS} is HIGH. The device remains in the previous state when \overline{CS} is HIGH.
2, 3, 5, 6, 8, 9, 11 12, 39, 40, 42, 43, 45, 46, 48, 49	DQ0 to DQ15	DQ Pin	DQ0 to DQ15 are DQ pins. DQ through these pins can be controlled in byte units using the LDQM and UDQM pins.
14, 36	LDQM, UDQM	Input Pin	LDQM and UDQM control the lower and upper bytes of the DQ buffers. In read mode, LDQM and UDQM control the output buffer. When LDQM or UDQM is LOW, the corresponding buffer byte is enabled, and when HIGH, disabled. The outputs go to the HIGH impedance state when LDQM/UDQM is HIGH. This function corresponds to \overline{OE} in conventional DRAMs. In write mode, LDQM and UDQM control the input buffer. When LDQM or UDQM is LOW, the corresponding buffer byte is enabled, and data can be written to the device. When LDQM or UDQM is HIGH, input data is masked and cannot be written to the device.
17	RAS	Input Pin	$\overline{\text{RAS}}$, in conjunction with $\overline{\text{CAS}}$ and $\overline{\text{WE}}$, forms the device command. See the "Command Truth Table" item for details on device commands.
15	WE	Input Pin	$\overline{\text{WE}}$, in conjunction with $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$, forms the device command. See the "Command Truth Table" item for details on device commands.
7, 13, 38, 44	VDDQ	Power Supply Pin	VDDQ is the output buffer power supply.
1, 25	VDD	Power Supply Pin	VDD is the device internal power supply.
4, 10, 41, 47	VSSQ	Power Supply Pin	VSSQ is the output buffer ground.
26, 50	VSS	Power Supply Pin	VSS is the device internal ground.

FUNCTIONAL BLOCK DIAGRAM

IS42S16100F ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameters		Rating	Unit
VDD MAX	Maximum Supply Voltage		-1.0 to +4.6	V
VDDQ MAX	Maximum Supply Voltage for Output Buffer		-1.0 to +4.6	V
VIN	Input Voltage		-1.0 to +4.6	V
Vout	Output Voltage		-1.0 to +4.6	V
Pd max	Allowable Power Dissipation		1	W
lcs	Output Shorted Current		50	mA
Topr	Operating Temperature C Automotive	Com. Ind. e, A1	0 to +70 -40 to +85 -40 to +85	С° С° С°
Tstg	Storage Temperature		–55 to +150	°C

DC RECOMMENDED OPERATING CONDITIONS⁽²⁾

Commercial (T_A = 0° C to $+70^{\circ}$ C), Industrial (T_A = -40° C to $+85^{\circ}$ C), Automotive, A1 (T_A = -40° C to $+85^{\circ}$ C)

Parameter	Test Condition	Min.	Тур.	Max.	Unit
Supply Voltage		3.0	3.3	3.6	V
Input High Voltage ⁽³⁾		2.0	— \	/ddq + 0.3	3 V
Input Low Voltage ⁽⁴⁾		-0.3		+0.8	V
Input Leakage Current	$0V \le V_{IN} \le VDD$, with pins other than the tested pin at $0V$	-5		5	μA
Output Leakage Current	Output is disabled, $0V \le V_{OUT} \le VDD$	-5		5	μA
Output High Voltage Level	louт = –2 mA	2.4		—	V
Output Low Voltage Level	louт = +2 mA			0.4	V
	Supply Voltage Input High Voltage ⁽³⁾ Input Low Voltage ⁽⁴⁾ Input Leakage Current Output Leakage Current Output High Voltage Level	Supply VoltageInput High Voltage ⁽³⁾ Input Low Voltage ⁽⁴⁾ Input Leakage Current $0V \le VIN \le VDD$, with pins other than the tested pin at $0V$ Output Leakage CurrentOutput is disabled, $0V \le VOUT \le VDD$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Supply Voltage3.03.3Input High Voltage ⁽³⁾ 2.0 $-1000000000000000000000000000000000000$	Supply Voltage3.03.33.6Input High Voltage ⁽³⁾ 2.0 $$ $V_{DDQ} + 0.3$ Input Low Voltage ⁽⁴⁾ -0.3 $$ $+0.8$ Input Leakage Current $0V \le VIN \le VDD$, with pins other than the tested pin at $0V$ -5 5 Output Leakage CurrentOutput is disabled, $0V \le VouT \le VDD$ -5 5 Output High Voltage Level $IouT = -2 \text{ mA}$ 2.4 $$

CAPACITANCE CHARACTERISTICS^(1,2) (At TA = 0 to +25°C, VDD = VDDQ = 3.3 ± 0.3V, f = 1 MHz)

Symbol	Parameter	Min.	Max.	Unit
CIN1	Input Capacitance: CLK	2.5	4.0	pF
CIN2	Input Capacitance: (A0-A11, CKE, CS, RAS, CAS, WE, LDQM, UDQM)	2.5	4.0	pF
CI/O	Data Input/Output Capacitance: DQ0-DQ15	4.0	5.0	pF

Notes:

 Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. All voltages are referenced to VSS.

3. VIH (max) = V_{DDQ} + 1.2V with a pulse width \leq 3 ns.

4. VIL (min) = -1.2V with a pulse width \leq 3 ns.

IS42S16100F and IS45S16100F DC ELECTRICAL CHARACTERISTICS

(Recommended Operation Conditions unless otherwise noted.)

Symbol	Parameter	Test Condition		-5	-6	-7	Unit
Icc1	Operating Current ^(1,2)	One Bank Operation, \overline{CAS} Latency = 3 Burst Length=1 $t_{RC} \ge t_{RC}$ (min)	Com. Ind., A1	120 —	110 120	100 110	mA mA
		IOUT = 0mA					
ICC2P	Precharge Standby Current (In Power-Down Mode)	$CKE \le V_{IL}$ (max) tck = tck (min)		2	2	2	mA
ICC2PS	Precharge Standby Current (In Power-Down and Clock Suspend Mode)	$\label{eq:cke} \begin{split} & CKE \leq ViL \ \ (MAX) \ \ tck = \infty \\ & CLK \leq ViL \ \ \ (MAX) \end{split}$		2	2	2	mA
ICC2N	Precharge Standby Current ⁽³⁾ (In Non Power-Down Mode)	$\frac{CKE \geq V_{\text{IH}} \text{ (MIN)}}{\overline{CS} \geq V_{\text{IH}} \text{ (MIN)}} \text{ tck} = \text{tck} \text{ (min)}$		35	35	35	mA
ICC2NS	Precharge Standby Current (In Non Power-Down and Clock Suspend Mode)	$\label{eq:cke} \begin{array}{ll} CKE \geq V_{IH} \ (\mbox{min}) & t_{CK} = \infty \\ CLK \leq V_{IL} \ (\mbox{max}) & \mbox{inputs are stable} \end{array}$		20	20	20	mA
Іссзр	Active Standby Current (In Power-Down Mode)	$CKE \le V_{IL}$ (max) tck = tck (min)		3	3	3	mA
ICC3PS	Active Standby Current (In Power-Down and Clock Suspend Mode)	$\begin{array}{ll} CKE \leq V_{IL} & (\mbox{max}) & t_{CK} = \infty \\ CLK \leq V_{IL} & (\mbox{max}) & \mbox{inputs are stable} \end{array}$		3	3	3	mA
Іссзи	Active Standby Current ⁽³⁾ (In Non Power-Down Mode)	$\frac{CKE \geq V_{\text{IH}} \text{ (MIN)}}{\overline{CS} \geq V_{\text{IH}} \text{ (MIN)}} \text{ tck} = \text{tck} \text{ (min)}$		55	55	55	mA
ICC3NS	Active Standby Current (In Non Power-Down and Clock Suspend Mode)	$\label{eq:cke} \begin{array}{ll} CKE \geq V_{IH} \mbox{ (MIN)} & t_{CK} = \infty \\ CLK \leq V_{IL} \mbox{ (MAX)} & Inputs \mbox{ are stable} \end{array}$		30	30	30	mA
ICC4	Operating Current (In Burst Mode) ^(1,3)	Both Banks activated tск = tск (мім) Page Burst Iouт = 0mA		120	110	100	mA
ICC5	Auto-Refresh Current	trc = trc (min)	Com. Ind., A1	120	100 110	80 90	mA mA
ICC6	Self-Refresh Current	$CKE \le 0.2V$		2	2	2	mA

Notes:

1. These are the values at the minimum cycle time. Since the currents are transient, these values decrease as the cycle time increases. Also note that a bypass capacitor of at least 0.01 µF should be inserted between VDD and Vss for each memory chip to suppress power supply voltage noise (voltage drops) due to these transient currents.

2. Icc1 and Icc4 depend on the output load. The maximum values for Icc1 and Icc4 are obtained with the output open state.

3. Inputs changed once every two clocks.

IS42S16100F and IS45S16100F AC CHARACTERISTICS^(1,2,3)

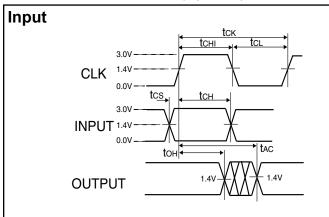
			-5	5	-	6	-	7	
Symbol	Parameter		Min.	Max.	Min.	Max.	Min.	Max.	Units
tск3	Clock Cycle Time	\overline{CAS} Latency = 3	5	_	6	_	7	_	ns
tск2		CAS Latency = 2	10	—	10	—	10	—	ns
tac3	Access Time From CLK ⁽⁴⁾	CAS Latency = 3	—	5	—	5.5	—	5.5	ns
tac2		CAS Latency = 2	_	6	_	6	_	6	ns
tсні	CLK HIGH Level Width		2	_	2.5	_	2.5	_	ns
tc∟	CLK LOW Level Width		2	—	2.5	—	2.5	—	ns
tон3	Output Data Hold Time	CAS Latency = 3	2	—	2.0	_	2.0	—	ns
toн2		CAS Latency = 2	2.5	_	2.5	_	2.5	_	ns
tLZ	Output LOW Impedance Time		0	_	0	_	0	_	ns
tHz3	Output HIGH Impedance Time(5)	\overline{CAS} Latency = 3	—	5	—	5.5	_	5.5	ns
tнz2		CAS Latency = 2	_	6		6		6	ns
tos	Input Data Setup Time		2	—	2	_	2	_	ns
tон	Input Data Hold Time		1	_	1	_	1	_	ns
tas	Address Setup Time		2	—	2	—	2	—	ns
tан	Address Hold Time		1	_	1	_	1	_	ns
tcĸs	CKE Setup Time		2	_	2	_	2	_	ns
tскн	CKE Hold Time		1	_	1	_	1	_	ns
tска	CKE to CLK Recovery Delay Time		1CLK+3	_	1CLK+3	5 —	1CLK+3	5 —	ns
tcs	Command Setup Time (CS, RAS, CAS, WE, D	QM)	2	_	2	_	2	_	ns
tсн	Command Hold Time (CS, RAS, CAS, WE, DC	QM)	1	_	1	_	1	_	ns
trc	Command Period (REF to REF / ACT to ACT)		50	_	54	_	63	_	ns
tras	Command Period (ACT to PRE)		35	100,000	36	100,000	42	100,000	ns
t RP	Command Period (PRE to ACT)		15	_	18	_	20	_	ns
trcd	Active Command To Read / Write Command D	elay Time	15	_	18	_	20	_	ns
trrd	Command Period (ACT [0] to ACT[1])	•	10	_	12	_	14	_	ns
tdpl3	Input Data To Precharge	\overline{CAS} Latency = 3	2CLK	_	2CLK	_	2CLK	_	ns
tdpl2	Command Delay time	CAS Latency = 2	2CLK	_	2CLK	_	2CLK	_	ns
tdal3	Input Data To Active / Refresh	\overline{CAS} Latency = 3	2CLK+tR	Р —	2CLK+tR	р —	2CLK+tR	р —	ns
tdal2	Command Delay time (During Auto-Precharge)	CAS Latency = 2	2CLK+tR	Р —	2CLK+tR	Р —	2CLK+tR	Р —	ns
txsr	Exit Self-Refresh to Active Time		55	_	60	_	70	—	ns
tτ	Transition Time		0.3	1.2	0.3	1.2	0.3	1.2	ns
t REF	Refresh Cycle Time (2048)			32		32		32	ms
	· · · /								

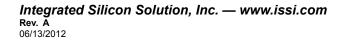
Notes:

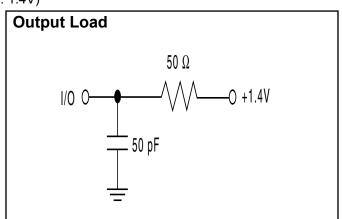
1. When power is first applied, memory operation should be started 100 µs after VDD and VDDQ reach their stipulated voltages. Also note that the power-on sequence must be executed before starting memory operation.

2. Measured with $t\tau = 1$ ns. If clock rising time is longer than 1ns, $(t\tau/2 - 0.5)$ ns should be added to the parameter.

3. The reference level is 1.4 V when measuring input signal timing. Rise and fall times are measured between VIH (min.) and VIL (max.).


4. Access time is measured at 1.4V with the load shown in the figure that follows.


5. The time tHz (max.) is defined as the time required for the output voltage to transition by ± 200 mV from VoH (min.) or VoL (max.) when the output is in the high impedance state.


IS42S16100F and IS45S16100F OPERATING FREQUENCY / LATENCY RELATIONSHIPS

SYMBOL	PARAMETER	-5	-6	-7	UNITS
_	Clock Cycle Time	5	6	7	ns
_	Operating Frequency	200	166	143	MHz
tcac	CAS Latency	3	3	3	cycle
trcd	Active Command To Read/Write Command Delay Time	3	3	3	cycle
t rac	RAS Latency (trcd + tcac)	6	6	6	cycle
trc	Command Period (REF to REF / ACT to ACT)	10	9	9	cycle
tras	Command Period (ACT to PRE)	7	6	6	cycle
t RP	Command Period (PRE to ACT)	3	3	3	cycle
trrd	Command Period (ACT[0] to ACT [1])	2	2	2	cycle
tccD	Column Command Delay Time (READ, READA, WRIT, WRITA)	1	1	1	cycle
t dpl	Input Data To Precharge Command Delay Time	2	2	2	cycle
t dal	Input Data To Active/Refresh Command Delay Time (During Auto-Precharge)	5	5	5	cycle
t rbd	Burst Stop Command To Output in HIGH-Z Delay Time (Read)	3	3	3	cycle
twвd	Burst Stop Command To Input in Invalid Delay Time (Write)	0	0	0	cycle
trql	Precharge Command To Output in HIGH-Z Delay Time (Read)	3	3	3	cycle
twdl	Precharge Command To Input in Invalid Delay Time (Write)	0	0	0	cycle
tPQL	Last Output To Auto-Precharge Start Time (Read)	-2	-2	-2	cycle
tqmd	DQM To Output Delay Time (Read)	2	2	2	cycle
t dmd	DQM To Input Delay Time (Write)	0	0	0	cycle
tмср	Mode Register Set To Command Delay Time	2	2	2	cycle

AC TEST CONDITIONS (Input/Output Reference Level: 1.4V)

IS42VS16100F ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameters		Rating	Unit
VDD MAX	Maximum Supply Voltage		-0.5 to +2.6	V
VDDQ MAX	Maximum Supply Voltage for Output Buffer		-0.5 to +2.6	V
VIN	Input Voltage		-0.5 to +2.6	V
Vout	Output Voltage		-0.5 to +2.6	V
Pd max	Allowable Power Dissipation		1	W
lcs	Output Shorted Current		50	mA
Topr	Operating Temperature	Com Ind.	0 to +70 -40 to +85	°C ℃
Тѕтс	Storage Temperature		-55 to +150	°C

DC RECOMMENDED OPERATING CONDITIONS⁽²⁾

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vdd, Vddq	Supply Voltage		1.7	1.8	1.9	V
Vih	Input High Voltage ⁽³⁾		0.8 x VDDQ	_	VDDQ + 0.3	V
VIL	Input Low Voltage ⁽⁴⁾		-0.3	—	+0.3	V
lı∟	Input Leakage Current	$0V \le V_{IN} \le V_{DD}$, with pins other than the tested pin at $0V$	-1.0		1.0	μA
Iol	Output Leakage Current	Output is disabled, $0V \le V_{OUT} \le V_{DD}$	-1.5		1.5	μA
Vон	Output High Voltage Level	Іон = –0.1 mA	0.9 x VDDQ		_	V
Vol	Output Low Voltage Level	loL = +0.1 mA			0.2	V

CAPACITANCE CHARACTERISTICS^(1,2) (TA = 0°C to +25°C, VDD = VDDQ = $1.8V \pm 0.15V$, f = 1 MHz)

Symbol	Parameter	Min.	Max.	Unit
Сім1	Input Capacitance: CLK	2.5	4.0	рF
CIN2	Input Capacitance: (A0-A11, CKE, CS, RAS, CAS, WE, LDQM, UDQM)	2.5	5.0	pF
CI/O	Data Input/Output Capacitance: DQ0-DQ15	4.0	6.5	pF

Notes:

 Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. All voltages are referenced to Vss.

3. VIH (max) = VDDQ + 1.2V with a pulse width \leq 3 ns.

4. VIL (min) = -1.2V with a pulse width \leq 3 ns.

IS42VS16100F DC ELECTRICAL CHARACTERISTICS

(Recommended Operation Conditions unless otherwise noted.)

Symbol	Parameter	Test Condition		-75	-10	Unit
Icc1	Operating Current ^(1,2)	One Bank Operation, Burst Length=1	CAS Latency = 3	45	35	mA mA
		trc ≥ trc (min) Iou⊤ = 0mA	CAS Latency = 2	50	40	mA
ICC2P	Precharge Standby Current (In Power-Down Mode)	$CKE \le VIL \text{ (max)}$	tск = tск (min)	0.3	0.3	mA
ICC2PS	Precharge Standby Current (In Power-Down and Clock Suspend Mode)	$\begin{array}{ll} CKE \leq V \text{IL} & (\text{MAX}) \\ CLK \leq V \text{IL} & (\text{MAX}) \end{array}$	tcκ = ∞	0.3	0.3	mA
ICC2N	Precharge Standby Current ⁽³⁾ (In Non Power-Down Mode)	$\frac{CKE \ge V\text{IH (MIN)}}{CS} \ge V\text{IH (MIN)}$	tск = tск (min)	25	20	mA
ICC2NS	Precharge Standby Current (In Non Power-Down and Clock Suspend Mode)	$\label{eq:cke} \begin{split} & CKE \geq V \text{IH (MIN)} \\ & CLK \leq V \text{IL (MAX)} \end{split}$	$t_{CK} = \infty$ Inputs are stable	10	10	mA
Іссзр	Active Standby Current (In Power-Down Mode)	$CKE \leq V\text{il} \text{ (max)}$	tск = tск (min)	3	3	mA
ICC3PS	Active Standby Current (In Power-Down and Clock Suspend Mode)	$\begin{array}{l} CKE \leq V \text{IL} (\text{MAX}) \\ CLK \leq V \text{IL} (\text{MAX}) \end{array}$	$t_{CK} = \infty$ Inputs are stable	3	3	mA
Іссзи	Active Standby Current ⁽³⁾ (In Non Power-Down Mode)	$\frac{CKE \ge V\text{IH (MIN)}}{\overline{CS} \ge V\text{IH (MIN)}}$	tск = tск (min)	30	25	mA
ICC3NS	Active Standby Current (In Non Power-Down and Clock Suspend Mode)	$\label{eq:cke} \begin{split} & \textbf{CKE} \geq \textbf{V}\text{IH} \text{ (min)} \\ & \textbf{CLK} \leq \textbf{V}\text{IL} \text{ (max)} \end{split}$	$t_{CK} = \infty$ Inputs are stable	10	10	mA
ICC4	Operating Current (In Burst Mode) ^(1,3)	Both Banks activated Page Burst Iout = 0mA	tск = tск (міл)	60	50	mA mA
Icc5	Auto-Refresh Current	$t_{RC} = t_{RC} (MIN)$		50	40	mA
	Self-Refresh Current	$CKE \le 0.2V$		180	180	μA

Notes:

1. These are the values at the minimum cycle time. Since the currents are transient, these values decrease as the cycle time increases. Also note that a bypass capacitor of at least 0.01 µF should be inserted between VDD and Vss for each memory chip to suppress power supply voltage noise (voltage drops) due to these transient currents.

2. Icc1 and Icc4 depend on the output load. The maximum values for Icc1 and Icc4 are obtained with the output open state.

3. Inputs changed once every two clocks.

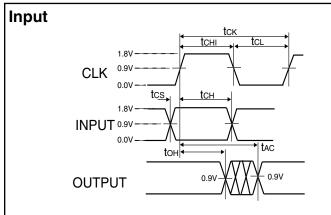
IS42VS16100F AC CHARACTERISTICS^(1,2,3,6)

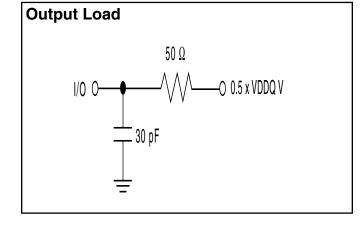
		-7	5	-1	0		
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
tcĸ3	Clock Cycle Time	CAS Latency = 3	7.5	_	10	_	ns
tск2		CAS Latency = 2	10	—	12	—	ns
tac3	Access Time From CLK ⁽⁴⁾	CAS Latency = 3	—	6	—	7	ns
tac2		CAS Latency = 2	—	8	—	8	ns
tсні	CLK HIGH Level Width		2.5	—	3	—	ns
tc∟	CLK LOW Level Width		2.5	—	3	—	ns
toн3	Output Data Hold Time	CAS Latency = 3	2	—	2	—	ns
toн2		CAS Latency = 2	2	_	2	_	ns
t∟z	Output LOW Impedance Time		0	_	0	_	ns
tнz3	Output HIGH Impedance Time(5)	CAS Latency = 3	_	6	_	7	ns
tHz2		CAS Latency = 2	—	8	_	8	ns
tos	Input Data Setup Time		2	_	2	_	ns
tdн	Input Data Hold Time		1	—	1	—	ns
tas	Address Setup Time		2	—	2	—	ns
tан	Address Hold Time		1	_	1	_	ns
tcĸs	CKE Setup Time		2		2	_	ns
tскн	CKE Hold Time		1	_	1	_	ns
tска	CKE to CLK Recovery Delay Time		1CLK+3	_	1CLK+3	_	ns
tcs	Command Setup Time (\overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WE} , DC	QM)	2	_	2	_	ns
tсн	Command Hold Time (\overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WE} , DQ	M)	1	_	1	_	ns
trc	Command Period (REF to REF / ACT to ACT)		75	_	100	_	ns
tras	Command Period (ACT to PRE)		45 1	00,000	60	100,000	ns
tRP	Command Period (PRE to ACT)		20	_	24	_	ns
trcd	Active Command To Read / Write Command De	elay Time	20	_	24	_	ns
trrd	Command Period (ACT [0] to ACT[1])		15	_	20	—	ns
tdpl3	Input Data To Precharge Command Delay time	CAS Latency = 3	2CLK	_	2CLK	_	ns
tdpl2	·	CAS Latency = 2	2CLK	—	2CLK	—	ns
tdal3	Input Data To Active / Refresh Command Delay time (During Auto-Precharge)	CAS Latency = 3	2CLK+trr	—	2CLK+trp	·	ns
tdal2	· - · ·	CAS Latency = 2	2CLK+tri	> <u> </u>	2CLK+trp)	ns
tτ	Transition Time		0.5	1.2	0.5	1.2	ns
tref	Refresh Cycle Time (2048)		_	32	_	32	ms

Notes:

3. The reference level is 0.9V when measuring input signal timing. Rise and fall times are measured between V_H (min.) and V_I (max.). 4. Access time is measured at 0.9V with the load shown in the figure below.

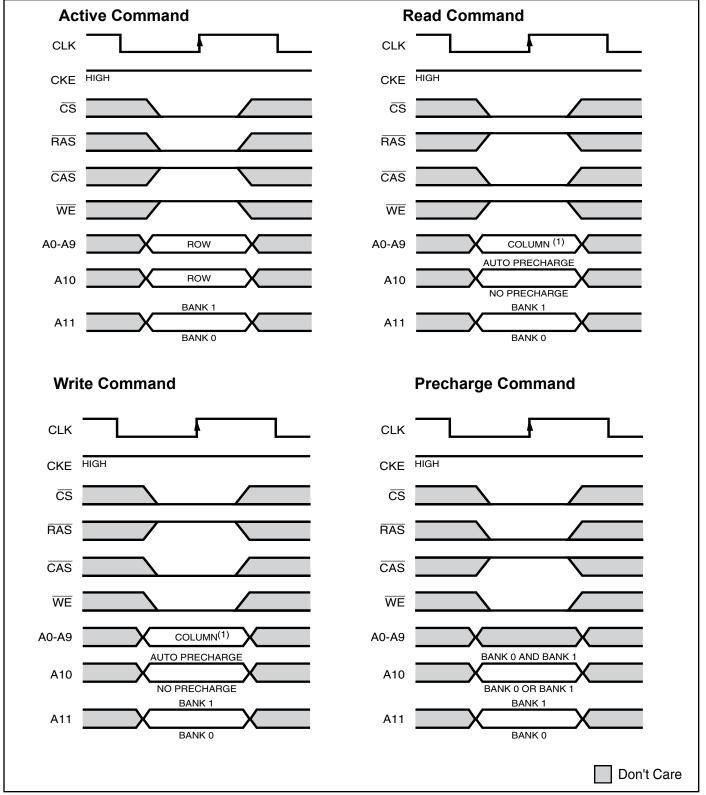
5. The time tHz (max.) is defined as the time required for the output voltage to become high impedance.


6. Not all parameters are tested at the wafer level, but the parameters have been previously characterized.

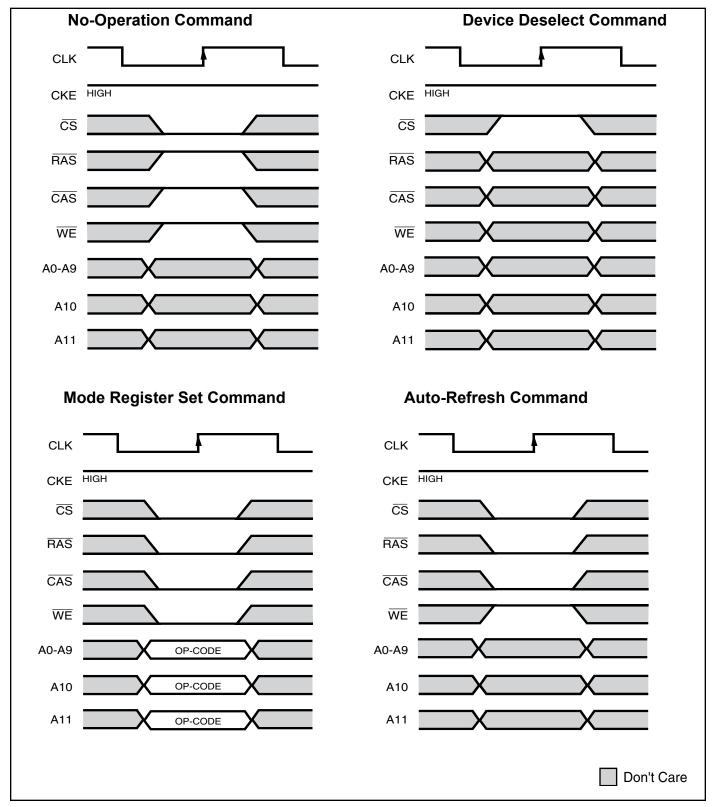

^{1.} The power-on sequence must be executed before starting memory operation. 2. Measured with $t\tau = 1.0$ ns. If clock rising time is longer than 1ns, ($t\tau/2 - 0.5$)ns should be added to the parameter.

IS42VS16100F OPERATING FREQUENCY / LATENCY RELATIONSHIPS

SYMBOL	PARAMETER		-75	-10	-10	UNITS
_	Clock Cycle Time		7.5	10	12	ns
_	Operating Frequency		133	100	83	MHz
tcac	CAS Latency		3	3	2	cycle
trcd	Active Command To Read/Write Command Delay Time		3	3	2	cycle
trac	RAS Latency (tRCD + tCAC)		6	6	4	cycle
trc	Command Period (REF to REF / ACT to ACT)		10	10	8	cycle
tras	Command Period (ACT to PRE)		6	6	5	cycle
tRP	Command Period (PRE to ACT)		3	3	2	cycle
trrd	Command Period (ACT[0] to ACT [1])		2	2	2	cycle
tccd	Column Command Delay Time (READ, READA, WRIT, WRITA)		1	1	1	cycle
tdpl	Input Data To Precharge Command Delay Time		2	2	2	cycle
tdal	Input Data To Active/Refresh Command Delay Time (During Auto-Precharge)		5	5	4	cycle
t rbd	Burst Stop Command To Output in HIGH-Z Delay Time (Read)	\overline{CAS} Latency = 3 \overline{CAS} Latency = 2	3	3	2	cycle
twвD	Burst Stop Command To Input in Invalid Delay Time (Write)		0	0	0	cycle
trql	Precharge Command To Output in HIGH-Z Delay Time (Read)	$\frac{\overline{CAS}}{\overline{CAS}} \text{ Latency} = 3$ $\frac{\overline{CAS}}{\overline{CAS}} \text{ Latency} = 2$	3	3	2	cycle
twol	Precharge Command To Input in Invalid Delay Time (Write)		0	0	0	cycle
t PQL	Last Output To Auto-Precharge Start Time (Read)	$\frac{\overline{CAS}}{\overline{CAS}} \text{ Latency} = 3$ $\frac{\overline{CAS}}{\overline{CAS}} \text{ Latency} = 2$	-2	-2 	 -1	cycle
tqмd	DQM To Output Delay Time (Read)		2	2	2	cycle
tdмd	DQM To Input Delay Time (Write)		0	0	0	cycle
tmrd	Mode Register Set To Command Delay Time		2	2	2	cycle

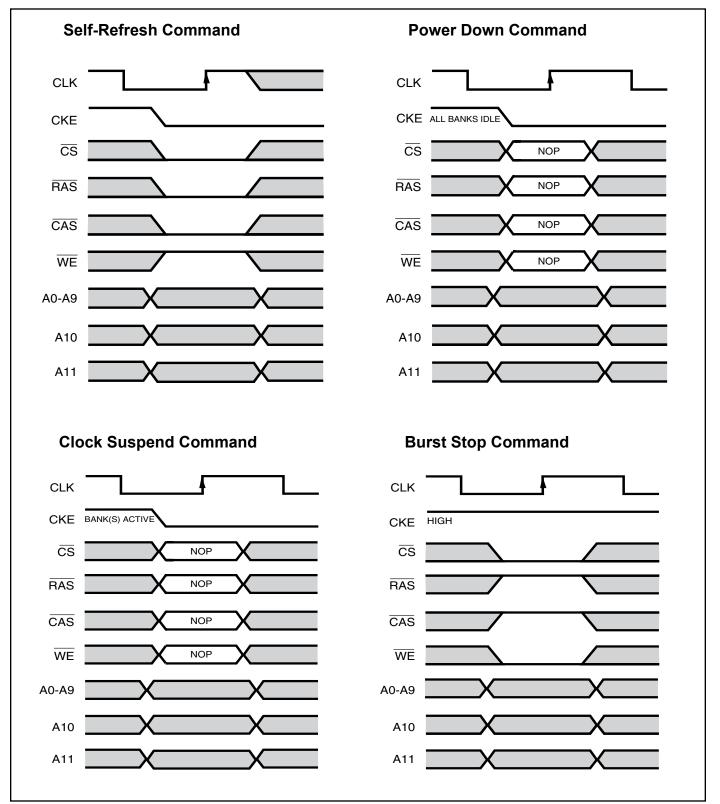

ACTEST CONDITIONS (Input/Output Reference Level: 0.9V)

COMMANDS



Notes:

1. A8-A9 = Don't Care.



COMMANDS (cont.)

COMMANDS (cont.)

Mode Register Set Command

$(\overline{CS}, \overline{RAS}, \overline{CAS}, \overline{WE} = LOW)$

The IS42/45S16100F and IS42VS16100F product incorporates a register that defines the device operating mode. This command functions as a data input pin that loads this register from the pins A0 to A11. When power is first applied, the stipulated power-on sequence should be executed and then the SDRAM should be initialized by executing a mode register set command.

Note that the mode register set command can be executed only when both banks are in the idle state (i.e. deactivated).

Another command cannot be executed after a mode register set command until after the passage of the period t_{MCD} , which is the period required for mode register set command execution.

Active Command

 $(\overline{CS}, \overline{RAS} = LOW, \overline{CAS}, \overline{WE} = HIGH)$

The SDRAM includes two banks of 2048 rows each. This command selects one of the two banks according to the A11 pin and activates the row selected by the pins A0 to A10.

This command corresponds to the fall of the \overline{RAS} signal from HIGH to LOW in conventional DRAMs.

Precharge Command

 $(\overline{CS}, \overline{RAS}, \overline{WE} = LOW, \overline{CAS} = HIGH)$

This command starts precharging the bank selected by pins A10 and A11. When A10 is HIGH, both banks are precharged at the same time. When A10 is LOW, the bank selected by A11 is precharged. After executing this command, the next command for the selected bank(s) is executed after passage of the period trap, which is the period required for bank precharging.

This command corresponds to the RAS signal from LOW to HIGH in conventional DRAMs

Read Command

 $(\overline{CS}, \overline{CAS} = LOW, \overline{RAS}, \overline{WE} = HIGH)$

This command selects the bank specified by the A11 pin and starts a burst read operation at the start address specified by pins A0 to A9. Data is output following \overline{CAS} latency.

The selected bank must be activated before executing this command.

When the A10 pin is HIGH, this command functions as a read with auto-precharge command. After the burst read completes, the bank selected by pin A11 is precharged. When the A10 pin is LOW, the bank selected by the A11 pin remains in the activated state after the burst read completes.

Write Command

 $(\overline{CS}, \overline{CAS}, \overline{WE} = LOW, \overline{RAS} = HIGH)$

When burst write mode has been selected with the mode register set command, this command selects the bank specified by the A11 pin and starts a burst write operation at the start address specified by pins A0 to A9. This first data must be input to the DQ pins in the cycle in which this command.

The selected bank must be activated before executing this command.

When A10 pin is HIGH, this command functions as a write with auto-precharge command. After the burst write completes, the bank selected by pin A11 is precharged. When the A10 pin is low, the bank selected by the A11 pin remains in the activated state after the burst write completes.

After the input of the last burst write data, the application must wait for the write recovery period (tDPL, tDAL) to elapse according to CAS latency.

Auto-Refresh Command

 $(\overline{CS}, \overline{RAS}, \overline{CAS} = LOW, \overline{WE}, CKE = HIGH)$

This command executes the auto-refresh operation. The row address and bank to be refreshed are automatically generated during this operation.

Both banks must be placed in the idle state before executing this command.

The stipulated period (t_{RC}) is required for a single refresh operation, and no other commands can be executed during this period.

The device goes to the idle state after the internal refresh operation completes.

This command must be executed at least 2048 times every 32 ms.

This command corresponds to CBR auto-refresh in conventional DRAMs.

Self-Refresh Command

 $(\overline{CS}, \overline{RAS}, \overline{CAS}, CKE = LOW, \overline{WE} = HIGH)$

This command executes the self-refresh operation. The row address to be refreshed, the bank, and the refresh interval are generated automatically internally during this operation. The self-refresh operation is started by dropping the CKE pin from HIGH to LOW. The self-refresh operation continues as long as the CKE pin remains LOW and there is no need for external control of any other pins. The self-refresh operation is terminated by raising the CKE pin from LOW to HIGH. The next command cannot be executed until the device internal recovery period (tRC) has elapsed. After the self-refresh, since it is impossible to determine the address of the last row to be refreshed, an auto-refresh should immediately be performed for all addresses (2048 cycles).

Both banks must be placed in the idle state before executing this command.

Burst Stop Command

 $(\overline{CS}, \overline{WE}, = LOW, \overline{RAS}, \overline{CAS} = HIGH)$

The command forcibly terminates burst read and write operations. When this command is executed during a burst read operation, data output stops after the CAS latency period has elapsed.

No Operation

 $(\overline{CS}, = LOW, \overline{RAS}, \overline{CAS}, \overline{WE} = HIGH)$ This command has no effect on the device.

Device Deselect Command

 $(\overline{CS} = HIGH)$

This command does not select the device for an object of operation. In other words, it performs no operation with respect to the device.

Power-Down Command

 $(CKE = LOW, \overline{CS} = HIGH)$

When both banks are in the idle (inactive) state, or when at least one of the banks is not in the idle (inactive) state, this command can be used to suppress device power dissipation by reducing device internal operations to the minimal level in order to retain data content. Power-down mode is started by dropping the CKE pin from HIGH to LOW, while satisfying the other command input conditions (see CKE Truth Table). Power-down mode continues as long as the CKE pin is held low. All pins other than the CKE pin are invalid and none of the other commands can be executed in this mode. The power-down operation is terminated by raising the CKE pin from LOW to HIGH. The next command cannot be executed until the recovery period (tCKA) has elapsed.

Since this command differs from the self-refresh command described above in that the refresh operation is not performed automatically internally, the refresh operation must be performed within the refresh period (tREF). Thus the maximum time that power-down mode can be held is just under the refresh cycle time.

Clock Suspend

(CKE = LOW)

This command can be used to stop the device internal clock temporarily during a read or write cycle. Clock suspend mode is started by dropping the CKE pin from HIGH to LOW. Clock suspend mode continues as long as the CKE pin is held LOW. All input pins other than the CKE pin are invalid and none of the other commands can be executed in this mode. Also note that the device internal state is maintained. Clock suspend mode is terminated by raising the CKE pin from LOW to HIGH, at which point device operation restarts. The next command cannot be executed until the recovery period (tckA) has elapsed.

Since this command differs from the self-refresh command described above in that the refresh operation is not performed automatically internally, the refresh operation must be performed within the refresh period (tREF). Thus the maximum time that clock suspend mode can be held is just under the refresh cycle time.

COMMAND TRUTH TABLE^(1,2)

		С	KΕ									
Symbol	Command	n-1	n	CS	RAS	CAS	WE	DQM	A11	A10	A9-A0	l/On
MRS	Mode Register Set ^(3,4)	Н	Х	L	L	L	L	Х	0	P COI	DE	Х
REF	Auto-Refresh ⁽⁵⁾	Н	Н	L	L	L	Н	Х	Х	Х	Х	HIGH-Z
SREF	Self-Refresh ^(5,6)	Н	L	L	L	L	Н	Х	Х	Х	Х	HIGH-Z
PRE	Precharge Selected Bank	Н	Х	L	L	Н	L	Х	BS	L	Х	Х
PALL	Precharge Both Banks	Н	Х	L	L	Н	L	Х	Х	Н	Х	Х
ACT	Bank Activate ⁽⁷⁾	Н	Х	L	L	Н	Н	Х	BS	Row	Row	Х
WRIT	Write	Н	Х	L	Н	L	L	Х	BS	L	Column) X
WRITA	Write With Auto-Precharge ⁽⁸⁾	Н	Х	L	Н	L	L	Х	BS	Н) X
READ	Read ⁽⁸⁾	Н	Х	L	Н	L	Н	Х	BS	L	Column(18) X
READA	Read With Auto-Precharge ⁽⁸⁾	Н	Х	L	Н	L	Н	Х	BS	Н	Column	B) X
BST	Burst Stop ⁽⁹⁾	Н	Н	L	Н	Н	L	Х	Х	Х	Х	Х
NOP	No Operation	Н	Х	L	Н	Н	Н	Х	Х	Х	Х	Х
DESL	Device Deselect	Н	Х	Н	Х	Х	Х	Х	Х	Х	Х	Х
ENB	Data Write / Output Enable	Н	Х	Х	Х	Х	Х	L	Х	Х	Х	Active
MASK	Data Mask / Output Disable	Н	Х	Х	Х	Х	Х	Н	Х	Х	Х	HIGH-Z

DQM TRUTH TABLE^(1,2)

		СК	CKE		М
Symbol	Command	n-1	n	UPPER	LOWER
ENB	Data Write / Output Enable	Н	Х	L	L
MASK	Data Mask / Output Disable	Н	Х	Н	Н
ENBU	Upper Byte Data Write / Output Enable	Н	Х	L	Х
ENBL	Lower Byte Data Write / Output Enable	Н	Х	Х	L
MASKU	Upper Byte Data Mask / Output Disable	Н	Х	Н	Х
MASKL	Lower Byte Data Mask / Output Disable	Н	Х	Х	Н

CKE TRUTH TABLE^(1,2)

			С	KE							
Symbol	Command	Current State	n-1	n	CS	RAS	CAS	WE	A11	A10	A9-A0
SPND	Start Clock Suspend Mode	Active	Н	L	Х	Х	Х	Х	Х	Х	Х
—	Clock Suspend	Other States	L	L	Х	Х	Х	Х	Х	Х	Х
—	Terminate Clock Suspend Mode	Clock Suspend	L	Н	Х	Х	Х	Х	Х	Х	Х
REF	Auto-Refresh	Idle	Н	Н	L	L	L	Н	Х	Х	Х
SELF	Start Self-Refresh Mode	Idle	Н	L	L	L	L	Н	Х	Х	Х
SELFX	Terminate Self-Refresh Mode	Self-Refresh	L	Н	L	Н	Н	Н	Х	Х	Х
			L	Н	Н	Х	Х	Х	Х	Х	Х
PDWN	Start Power-Down Mode	Idle	Н	L	L	Н	Н	Н	Х	Х	Х
			Н	L	Н	Х	Х	Х	Х	Х	Х
_	Terminate Power-Down Mode	Power-Down	L	Н	Н	Х	Х	Х	Х	Х	Х
			L	Н	L	Н	Н	Н	Х	Х	Х

OPERATION COMMAND TABLE(1,2)

Idle	DESL								
	8202	No Operation or Power-Down ⁽¹²⁾	Н	Х	Х	Х	Х	Х	Х
	NOP	No Operation or Power-Down ⁽¹²⁾	L	Н	Н	Н	Х	Х	Х
	BST	No Operation or Power-Down	L	Н	Н	L	Х	Х	Х
	READ / READA	llegal	L	Н	L	Н	V	V	V(18)
	WRIT/WRITA	lllegal	L	Н	L	L	V	V	V ⁽¹⁸⁾
	ACT	Row Active	L	L	Н	Н	V	V	V(18)
	PRE/PALL	No Operation	L	L	Н	L	V	V	Х
	REF/SELF	Auto-Refresh or Self-Refresh ⁽¹³⁾	L	L	L	Н	Х	Х	Х
	MRS	Mode Register Set	L	L	L	L	С		DE
Row Active	DESL	No Operation	Н	Х	Х	Х	Х	Х	Х
	NOP	No Operation	L	Н	Н	Н	Х	Х	Х
	BST	No Operation	L	Н	Н	L	Х	X	X
	READ/READA	Read Start ⁽¹⁷⁾	-	Н	L	H	V	V	V(18)
	WRIT/WRITA	Write Start ⁽¹⁷⁾	-	H	L	L	v	v	V(18)
	ACT	Illegal ⁽¹⁰⁾	1	L	Н	Н	v	v	V(18)
	PRE/PALL	Precharge ⁽¹⁵⁾	1	L	Н	L	V	v	X
	REF/SELF	llegal	ь 1	L	L	Н	X	X	X
	MRS	llegal	ь 1	L	L	L			
Read	DESL	Burst Read Continues, Row Active When Done	H	<u> </u>	<u> </u>	X	X	X	<u>х</u>
Reau	NOP	Burst Read Continues, Row Active When Done	11	Ĥ	H	Ĥ	X	X	X
	BST	Burst Interrupted, Row Active After Interrupt	L 1	H	H	L	X	X	X
	READ/READA		L 1	н		Ч	N V	^ V	∧ V(18)
		Burst Interrupted, Read Restart After Interrupt ⁽¹⁶⁾	L 1		L			V	V ⁽¹⁰⁾
	WRIT/WRITA	Burst Interrupted Write Start After Interrupt ^(11,16)	L	H	L	L	V		
	ACT	Illegal ⁽¹⁰⁾	L	L	Н	Н	V	V	V ⁽¹⁸⁾
	PRE/PALL	Burst Read Interrupted, Precharge After Interrupt	L	L	H	L	V	V	Х
	REF/SELF	Illegal	L	L	L	Н	Х	X	Х
	MRS					L		P COI	
Write	DESL	Burst Write Continues, Write Recovery When Done	H	Х	Х	Х	Х	Х	Х
	NOP	Burst Write Continues, Write Recovery When Done	L	Н	Н	H	Х	Х	Х
	BST	Burst Write Interrupted, Row Active After Interrupt	L	H	H	L	Х	Х	Х
	READ/READA	Burst Write Interrupted, Read Start After Interrupt ^(11,16)	L	Н	L	Н	V	V	V ⁽¹⁸⁾
	WRIT/WRITA	Burst Write Interrupted, Write Restart After Interrupt ⁽¹⁶⁾	L	Н	L	L	V	V	V ⁽¹⁸⁾
	ACT	Illegal ⁽¹⁰⁾	L	L	Н	Н	V	V	V ⁽¹⁸⁾
	PRE/PALL	Burst Write Interrupted, Precharge After Interrupt	L	L	Н	L	V	V	Х
	REF/SELF	lllegal	L	L	L	Н	Х	Х	Х
	MRS	lllegal	L	L	L	L		P COI	
Read With Auto-	DESL NOP	Burst Read Continues, Precharge When Done Burst Read Continues, Precharge When Done	H L	X H	X H	X H	X X	X X	X X
Precharge	BST	lllegal	L	Н	Н	L	Х	Х	Х
e e g e	READ/READA	lllegal	-	Н	L	H	V	V	V(18)
	WRIT/WRITA	llegal	Ē	H	L	L	v	v	V(18)
	ACT		-	L	Н	Н	v	v	V ⁽¹⁸⁾
	PRE/PALL	llegal ⁽¹⁰⁾	- I	L	H	L	V	V	X
	REF/SELF	llegal	Г 	L	L	Ч	v X	X	X
	MRS	llegal	<u>د</u>	<u>د</u>	L	L			

OPERATION COMMAND TABLE(1,2)

Current State	Command	Operation	CS	RAS	CAS	WE	A11	A10	A9-A0
Write With Auto-Precharge	DESL	Burst Write Continues, Write Recovery And Precharge When Done	Н	Х	Х	Х	Х	Х	Х
	NOP	Burst Write Continues, Write Recovery And Precharge	L	Н	Н	Н	Х	Х	Х
	BST	llegal	L	Н	Н	L	Х	Х	Х
	READ/READA	llegal	L	Н	L	Н	V	V	V(18)
	WRIT/WRITA	lllegal	L	Н	L	L	V	V	V(18)
	ACT	Illegal(10)	L	L	Н	Н	V	V	V(18)
	PRE/PALL	lllegal ⁽¹⁰⁾	L	L	Н	L	V	V	Х
	REF/SELF	lllegal	L	L	L	Н	Х	Х	Х
	MRS	lllegal	L	L	L	L	C)PCO	DE
Row Precharge	DESL	No Operation, Idle State After tre Has Elapsed	Н	Х	Х	Х	Х	Х	Х
	NOP	No Operation, Idle State After tre Has Elapsed	L	Н	Н	Н	Х	Х	Х
	BST	No Operation, Idle State After tre Has Elapsed	L	Н	Н	L	Х	Х	Х
	READ/READA	lllegal ⁽¹⁰⁾	L	Н	L	Н	V	V	
	WRIT/WRITA	lllegal ⁽¹⁰⁾	L	Н	L	L	V	V	
	ACT	lllegal ⁽¹⁰⁾	L	L	Н	Н	V	V	V(18)
	PRE/PALL	No Operation, Idle State After tre Has Elapsed ⁽¹⁰⁾	L	L	Н	L	V	V	V(18) V(18) V(18) X X DDE X X
	REF/SELF	lllegal	L	L	L	Н	Х	-	
	MRS	Illegal	L	L	L	L	С		DE
Immediately	DESL	No Operation, Row Active After tRcD Has Elapsed	Η	Х	Х	Х	Х	Х	
Following	NOP	No Operation, Row Active After tRcD Has Elapsed	L	Н	Н	Н	Х	Х	
Row Active	BST	No Operation, Row Active After tRcD Has Elapsed	L	Н	Н	L	Х	Х	
	READ/READA	lllegal ⁽¹⁰⁾	L	Н	L	Н	V	V	V(18)
	WRIT/WRITA	Illegal(10)	L	Н	L	L	V	V	V(18)
	ACT	Illegal(10,14)	L	L	Н	Н	V	V	V(18)
	PRE/PALL	Illegal ⁽¹⁰⁾	L	L	Н	L	V	V	Х
	REF/SELF	lllegal	L	L	L	Н	Х	Х	Х
	MRS	Illegal						P CC	
Write Recovery	DESL NOP	No Operation, Row Active After tDPL Has Elapsed No Operation, Row Active After tDPL Has Elapsed		X H	X H	X H	X X	X X	X X
Recovery	BST	No Operation, Row Active After toPL Has Elapsed		н	н	L	X	X	X
	READ/READA	Read Start	1	н	1	Н	V		V(18)
	WRIT/WRITA	Write Restart	L	н	L	L	v		v(18)
	ACT	Illegal(10)	L	L	Н	Н	v	v	
	PRE/PALL	Illegal ⁽¹⁰⁾	1	L	н	L	v	v	X
	REF/SELF	llegal	1	L	L	Н	x	x	X
	MRS	llegal	-	L	L	L		P CC	

Current State	Command	Operation	CS	RAS	CAS	WE	A11	A10	A9-A0	
Write Recovery	DESL	No Operation, Idle State After tDAL Has Elapsed	Н	Х	Х	Х	Х	Х	Х	
With Auto-	NOP	No Operation, Idle State After tDAL Has Elapsed	L	Н	Н	Н	Х	Х	Х	
Precharge	BST	No Operation, Idle State After tDAL Has Elapsed	L	Н	Н	L	Х	Х	Х	
	READ/READA	lllegal ⁽¹⁰⁾	L	Н	L	Н	V	V	V ⁽¹⁸⁾	
	WRIT/WRITA	Illegal ⁽¹⁰⁾	L	Н	L	L	V	V	V ⁽¹⁸⁾	
	ACT	lllegal ⁽¹⁰⁾	L	L	Н	Н	V	V	V ⁽¹⁸⁾	
	PRE/PALL	lllegal ⁽¹⁰⁾	L	L	Н	L	V	V	Х	
	REF/SELF	llegal	L	L	L	Н	Х	Х	Х	
	MRS	llegal	L	L	L	L	С	P COI	DE	
Refresh	DESL	No Operation, Idle State After tre Has Elapsed	Н	Х	Х	Х	Х	Х	Х	
	NOP	No Operation, Idle State After tre Has Elapsed	L	Н	Н	Н	Х	Х	Х	
	BST	No Operation, Idle State After tRP Has Elapsed	L	Н	Н	L	Х	Х	Х	
	READ/READA	lllegal	L	Н	L	Н	V	V	V(18)	
	WRIT/WRITA	lllegal	L	Н	L	L	V	V	V ⁽¹⁸⁾	
	ACT	lllegal	L	L	Н	Н	V	V	V ⁽¹⁸⁾	
	PRE/PALL	llegal	L	L	Н	L	V	V	Х	
	REF/SELF	lllegal	L	L	L	Н	Х	Х	Х	
	MRS	lllegal	L	L	L	L	С	P COI	DE	
Mode Register	DESL	No Operation, Idle State After tMcD Has Elapsed	Н	Х	Х	Х	Х	Х	Х	
Set	NOP	No Operation, Idle State After tMCD Has Elapsed	L	Н	Н	Н	Х	Х	Х	
	BST	No Operation, Idle State After tMCD Has Elapsed	L	Н	Н	L	Х	Х	Х	
	READ/READA	lllegal	L	Н	L	Н	V	V	V ⁽¹⁸⁾	
	WRIT/WRITA	lllegal	L	Н	L	L	V	V	V(18)	
	ACT	llegal	L	L	Н	Н	V	V	V ⁽¹⁸⁾	
	PRE/PALL	llegal	L	L	Н	L	V	V	Х	
	REF/SELF	llegal	L	L	L	Н	Х	Х	Х	
	MRS	lllegal	L	L	L	L OP CODE				

OPERATION COMMAND TABLE(1,2)

Notes:

1. H: HIGH level input, L: LOW level input, X: "Don't Care" input, V: Valid data input

2. All input signals are latched on the rising edge of the CLK signal.

3. Both banks must be placed in the inactive (idle) state in advance.

4. The state of the A0 to A11 pins is loaded into the mode register as an OP code.

5. The row address is generated automatically internally at this time. The DQ pin and the address pin data is ignored.

6. During a self-refresh operation, all pin data (states) other than CKE is ignored.

7. The selected bank must be placed in the inactive (idle) state in advance.

8. The selected bank must be placed in the active state in advance.

9. This command is valid only when the burst length set to full page.

10. This is possible depending on the state of the bank selected by the A11 pin.

11. Time to switch internal busses is required.

12. The SDRAM can be switched to power-down mode by dropping the CKE pin LOW when both banks in the idle state. Input pins other than CKE are ignored at this time.

13. The SDRAM can be switched to self-refresh mode by dropping the CKE pin LOW when both banks in the idle state. Input pins other than CKE are ignored at this time.

14. Possible if tRRD is satisfied.

15. Illegal if tRAS is not satisfied.

16. The conditions for burst interruption must be observed. Also note that the SDRAM will enter the pre charged state immediately after the burst operation completes if auto-precharge is selected.

17. Command input becomes possible after the period tRCD has elapsed. Also note that the SDRAM will enter the precharged state immediately after the burst operation completes if auto-precharge is selected.

18. A8,A9 = don't care.

CKE RELATED COMMAND TRUTH TABLE(1)

		Cl	KE							
Current State	Operation	n-1	n	CS	RAS	CAS	WE	A11	A10	A9-A
Self-Refresh	Undefined	Н	Х	Х	Х	Х	Х	Х	Х	Х
	Self-Refresh Recovery ⁽²⁾	L	Н	Н	Х	Х	Х	Х	Х	Х
	Self-Refresh Recovery ⁽²⁾	L	Н	L	Н	Н	Х	Х	Х	Х
	Illegal ⁽²⁾	L	Н	L	Н	L	Х	Х	Х	Х
	Illegal ⁽²⁾	L	Н	L	L	Х	Х	Х	Х	Х
	Maintain Self-Refresh	L	L	Х	Х	Х	Х	Х	Х	Х
Self-Refresh Recovery	Idle State After tRc Has Elapsed	Н	Н	Н	Х	Х	Х	Х	Х	Х
	Idle State After tRc Has Elapsed	Н	Н	L	Н	Н	Х	Х	Х	Х
	Illegal	Н	Н	L	Н	L	Х	Х	Х	Х
	Illegal	Н	Н	L	L	Х	Х	Х	Х	Х
	Power-Down on the Next Cycle	Н	L	Н	Х	Х	Х	Х	Х	Х
	Power-Down on the Next Cycle	Н	L	L	Н	Н	Х	Х	Х	Х
	Illegal	Н	L	L	Н	L	Х	Х	Х	Х
	Illegal	Н	L	L	L	Х	Х	Х	Х	Х
	Clock Suspend Termination on the Next Cycle (2)	L	Н	Х	Х	Х	Х	Х	Х	Х
	Maintain Clock Suspend	L	L	Х	Х	Х	Х	Х	Х	Х
Power-Down	Undefined	Н	Х	Х	Х	Х	Х	Х	Х	Х
	Power-Down Mode Termination, Idle After That Termination ⁽²⁾	L	Η	Х	Х	Х	Х	Х	Х	Х
	Maintain Power-Down Mode	L	L	Х	Х	Х	Х	Х	Х	Х
Both Banks Idle	No Operation	Н	Н	Н	Х	Х	Х	Х	Х	Х
	See the Operation Command Table	Н	Н	L	Н	Х	Х	Х	Х	Х
	Bank Active Or Precharge	Н	Н	L	L	Н	Х	Х	Х	Х
	Auto-Refresh	Н	Н	L	L	L	Н	Х	Х	Х
	Mode Register Set	Н	Н	L	L	L	L	С	P COI	DE
	See the Operation Command Table	Н	L	Н	Х	Х	Х	Х	Х	Х
	See the Operation Command Table	Н	L	L	Н	Х	Х	Х	Х	Х
	See the Operation Command Table	Н	L	L	L	Н	Х	Х	Х	Х
	Self-Refresh ⁽³⁾	Н	L	L	L	L	Н	Х	Х	Х
	See the Operation Command Table	Н	L	L	L	L	L	С	P COI	DE
	Power-Down Mode ⁽³⁾	L	Х	Х	Х	Х	Х	Х	Х	Х
Other States	See the Operation Command Table	Н	Н	Х	Х	Х	Х	Х	Х	Х
	Clock Suspend on the Next Cycle ⁽⁴⁾	Н	L	Х	Х	Х	Х	Х	Х	Х
	Clock Suspend Termination on the Next Cycle	L	Н	Х	Х	Х	Х	Х	Х	Х
	Maintain Clock Suspend	L	L	Х	Х	Х	Х	Х	Х	Х

Notes:

1. H: HIGH level input, L: LOW level input, X: "Don't Care" input

2. The CLK pin and the other input are reactivated asynchronously by the transition of the CKE level from LOW to HIGH.

The minimum setup time (tcka) required before all commands other than mode termination must be satisfied.

3. Both banks must be set to the inactive (idle) state in advance to switch to power-down mode or self-refresh mode.

4. The input must be command defined in the operation command table.

TWO BANKS OF									Previo	us State	Next S	State
Operation	CS	RAS	CAS	WĒ	A11	A10	A9-A0	BANK 0	BANK 1	BANK (BANK 1	
DESL	Н	Х	Х	Х	Х	Х	Х	Any	Any	Any	Any	
NOP	L	Н	Н	Н	Х	Х	Х	Any	Any	Any	Any	
BST	L	Н	Н	L	Х	Х	Х	R/W/A	I/A	А	I/A	
								I	I/A	I	I/A	
								I/A	R/W/A	I/A	А	
								I/A	I	I/A	I	
READ/READA	L	Н	L	Н	Н	Н	CA ⁽³⁾	I/A	R/W/A	I/A	RP	
					Н	Н	CA ⁽³⁾	R/W	А	А	RP	
					Н	L	CA ⁽³⁾	I/A	R/W/A	I/A	R	
					Н	L	CA ⁽³⁾	R/W	А	А	R	
					L	Н	CA ⁽³⁾	R/W/A	I/A	RP	I/A	
					L	Н	CA ⁽³⁾	А	R/W	RP	А	
					L	L	CA ⁽³⁾	R/W/A	I/A	R	I/A	
					L	L	CA ⁽³⁾	A	R/W	R	А	
WRIT/WRITA	L	Н	L	L	Н	Н	CA ⁽³⁾	I/A	R/W/A	I/A	WP	
					Н	Н	CA ⁽³⁾	R/W	Α	Α	WP	
					Н	L	CA ⁽³⁾	I/A	R/W/A	I/A	W	
					Н	L	CA ⁽³⁾	R/W	А	Α	W	
					L	Н	CA ⁽³⁾	R/W/A	I/A	WP	I/A	
					L	Н	CA ⁽³⁾	А	R/W	WP	А	
					L	L	CA ⁽³⁾	R/W/A	I/A	W	I/A	
						L	CA ⁽³⁾	A	R/W	W	A	
ACT	L	L	Н	Н	Н	RA	RA	Any	I	Any	А	
					L	RA	RA		Any	Α	Any	
PRE/PALL	L	L	Н	L	Х	Н	Х	R/W/A/I		I	I	
					Х	Н	Х	I/A	R/W/A/I	I	I	
					Н	L	Х	I/A	R/W/A/I	I/A	I	
					Н	L	Х	R/W/A/I		R/W/A/		
					L	L	Х	R/W/A/I		I	I/A	
					L	L	Х	I/A	R/W/A/I	I	R/W/A/I	
REF	L	L	L	Н	Х	Х	Х					
MRS	L	L	L	L	0	PCOI	DE	I	1	1	1	

TWO BANKS OPERATION COMMAND TRUTH TABLE^(1,2)

Notes:

1. H: HIGH level input, L: LOW level input, X: HIGH or LOW level input, RA: Row Address, CA: Column Address

2. The device state symbols are interpreted as follows:

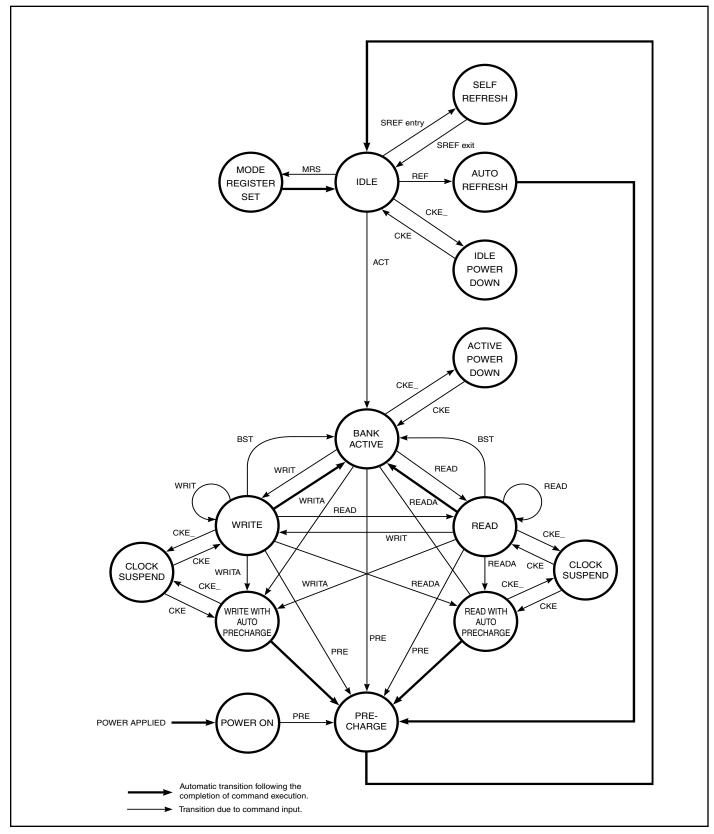
I Idle (inactive state)

A Row Active State

R Read

W Write

RP Read With Auto-Precharge


WP Write With Auto-Precharge

Any Any State

3. CA: A8,A9 = don't care.

SIMPLIFIED STATE TRANSITION DIAGRAM (One Bank Operation)

