Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! ## Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # IS42S83200J, IS42S16160J IS45S83200J, IS45S16160J ### 32Meg x 8, 16Meg x16 256Mb SYNCHRONOUS DRAM **MARCH 2016** #### **FEATURES** - Clock frequency: 166, 143, 133 MHz - Fully synchronous; all signals referenced to a positive clock edge - Internal bank for hiding row access/precharge - Single Power supply: 3.3V ± 0.3V - · LVTTL interface - Programmable burst length (1, 2, 4, 8, full page) - Programmable burst sequence: Sequential/Interleave - Auto Refresh (CBR) - Self Refresh - 8K refresh cycles every 32 ms (A2 grade) or 64 ms (commercial, industrial, A1 grade) - Random column address every clock cycle - Programmable CAS latency (2, 3 clocks) - Burst read/write and burst read/single write operations capability - Burst termination by burst stop and precharge command #### **OPTIONS** - Package: 54-pin TSOP-II 54-ball BGA - Operating Temperature Range: Commercial (0°C to +70°C) Industrial (-40°C to +85°C) Automotive Grade A1 (-40°C to +85°C) Automotive Grade A2 (-40°C to +105°C) #### **OVERVIEW** *ISSI*'s 256Mb Synchronous DRAM achieves high-speed data transfer using pipeline architecture. All inputs and outputs signals refer to the rising edge of the clock input. The 256Mb SDRAM is organized as follows. | IS42/45S16160J | |----------------| | 4M x16x4 Banks | | 54-pin TSOPII | | 54-ball BGA | | | #### **KEY TIMING PARAMETERS** | Parameter | -6 | -7 | Unit | |-------------------------------------|-----|-----|------| | Clk Cycle Time | | | | | \overline{CAS} Latency = 3 | 6 | 7 | ns | | CAS Latency = 2 | 10 | 7.5 | ns | | Clk Frequency | | | | | \overline{CAS} Latency = 3 | 166 | 143 | Mhz | | $\overline{\text{CAS}}$ Latency = 2 | 100 | 133 | Mhz | | Access Time from Clock | | | | | \overline{CAS} Latency = 3 | 5.4 | 5.4 | ns | | CAS Latency = 2 | 5.4 | 5.4 | ns | #### **ADDRESS TABLE** | Parameter | 32M x 8 | 16M x 16 | |---------------------|---------------------|----------------------| | Configuration | 8M x 8 x 4
banks | 4M x 16 x 4
banks | | Refresh Count | | | | Com./Ind. | 8K/64ms | 8K/64ms | | A1 | 8K/64ms | 8K/64ms | | A2 | 8K/32ms | 8K/32ms | | Row Addresses | A0-A12 | A0-A12 | | Column Addresses | A0-A9 | A0-A8 | | Bank Address Pins | BA0, BA1 | BA0, BA1 | | Auto Precharge Pins | A10/AP | A10/AP | Copyright © 2016 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products. Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that: a.) the risk of injury or damage has been minimized; b.) the user assume all such risks; and c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances #### **DEVICE OVERVIEW** The 256Mb SDRAM is a high speed CMOS, dynamic random-access memory designed to operate in 3.3V VDD and 3.3V VDDQ memory systems containing 268,435,456 bits. Internally configured as a quad-bank DRAM with a synchronous interface. Each 67,108,864-bit bank is organized as 8,192 rows by 512 columns by 16 bits or 8,192 rows by 1,024 columns by 8 bits. The 256Mb SDRAM includes an AUTO REFRESH MODE, and a power-saving, power-down mode. All signals are registered on the positive edge of the clock signal, CLK. All inputs and outputs are LVTTL compatible. The 256Mb SDRAM has the ability to synchronously burst data at a high data rate with automatic column-address generation, the ability to interleave between internal banks to hide precharge time and the capability to randomly change column addresses on each clock cycle during burst access. A self-timed row precharge initiated at the end of the burst sequence is available with the AUTO PRECHARGE function enabled. Precharge one bank while accessing one of the other three banks will hide the precharge cycles and provide seamless, high-speed, random-access operation. SDRAM read and write accesses are burst oriented starting at a selected location and continuing for a programmed number of locations in a programmed sequence. The registration of an ACTIVE command begins accesses, followed by a READ or WRITE command. The ACTIVE command in conjunction with address bits registered are used to select the bank and row to be accessed (BAO, BA1 select the bank; A0-A12 select the row). The READ or WRITE commands in conjunction with address bits registered are used to select the starting column location for the burst access. Programmable READ or WRITE burst lengths consist of 1, 2, 4 and 8 locations or full page, with a burst terminate option. #### FUNCTIONAL BLOCK DIAGRAM (FOR 4Mx16x4 BANKS SHOWN) ### PIN CONFIGURATIONS 54 pin TSOP - Type II for x8 | A0-A12 | Row Address Input | |------------|-------------------------------| | A0-A9 | Column Address Input | | BA0, BA1 | Bank Select Address | | DQ0 to DQ7 | Data I/O | | CLK | System Clock Input | | CKE | Clock Enable | | CS | Chip Select | | RAS | Row Address Strobe Command | | CAS | Column Address Strobe Command | | WE | Write Enable | |------|--------------------------| | DQM | Data Input/Output Mask | | VDD | Power | | Vss | Ground | | VDDQ | Power Supply for I/O Pin | | Vssq | Ground for I/O Pin | | NC | No Connection | ### PIN CONFIGURATIONS 54 pin TSOP - Type II for x16 | A0-A12 | Row Address Input | |-------------|-------------------------------| | A0-A8 | Column Address Input | | BA0, BA1 | Bank Select Address | | DQ0 to DQ15 | Data I/O | | CLK | System Clock Input | | CKE | Clock Enable | | CS | Chip Select | | RAS | Row Address Strobe Command | | CAS | Column Address Strobe Command | | WE | Write Enable | |------|-----------------------------------| | DQML | x16 Lower Byte, Input/Output Mask | | DQMH | x16 Upper Byte, Input/Output Mask | | VDD | Power | | Vss | Ground | | VDDQ | Power Supply for I/O Pin | | Vssq | Ground for I/O Pin | | NC | No Connection | #### **PIN CONFIGURATION** **54-ball TF-BGA for x8** (Top View) (8.00 mm x 8.00 mm Body, 0.8 mm Ball Pitch) package code: B | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |---|---|---|-------------------------|---|---|---|---|---|---| | A
B
C
D
E
F
G
H
J | | | VSSC VDDC VSS CKE A A A |) | | | VDDC
VSSC
VDDC
VSSC
VDDC
CAS
BAC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
A | | | | A0-A12 | Row Address Input | |------------|-------------------------------| | A0-A9 | Column Address Input | | BA0, BA1 | Bank Select Address | | DQ0 to DQ7 | Data I/O | | CLK | System Clock Input | | CKE | Clock Enable | | CS | Chip Select | | RAS | Row Address Strobe Command | | CAS | Column Address Strobe Command | | WE | Write Enable | |------|--------------------------| | DQM | Data Input/Output Mask | | VDD | Power | | Vss | Ground | | VDDQ | Power Supply for I/O Pin | | Vssq | Ground for I/O Pin | | NC | No Connection | ### IS42S83200J, IS42S16160J IS45S83200J, IS45S16160J #### **PIN CONFIGURATION** **54-ball TF-BGA for x16** (Top View) (8.00 mm x 8.00 mm Body, 0.8 mm Ball Pitch) package code: B 3 5 8 9 4 6 7 Α В DQ14 DQ13 VDDQ DQ2 VDDQ DQ4 DQ12 DQ11 VSSQ DQ10 DQ9 VDDQ DQ6 Ε VDD DQML DQ7 NC F DQMH CLK G Н J | A0-A12 | Row Address Input | |-------------|-------------------------------| | A0-A8 | Column Address Input | | BA0, BA1 | Bank Select Address | | DQ0 to DQ15 | Data I/O | | CLK | System Clock Input | | CKE | Clock Enable | | CS | Chip Select | | RAS | Row Address Strobe Command | | CAS | Column Address Strobe Command | | DQML x16 Lower Byte Input/Output Mask DQMH x16 Upper Byte Input/Output Mask VDD Power Vss Ground VDDQ Power Supply for I/O Pin VssQ Ground for I/O Pin NC No Connection | WE | Write Enable | |---|------|----------------------------------| | VDD Power Vss Ground VDDQ Power Supply for I/O Pin VssQ Ground for I/O Pin | DQML | x16 Lower Byte Input/Output Mask | | Vss Ground VDDQ Power Supply for I/O Pin VssQ Ground for I/O Pin | DQMH | x16 Upper Byte Input/Output Mask | | VDDQ Power Supply for I/O Pin Vssq Ground for I/O Pin | VDD | Power | | Vssa Ground for I/O Pin | Vss | Ground | | | VDDQ | Power Supply for I/O Pin | | NC No Connection | Vssq | Ground for I/O Pin | | | NC | No Connection | ### IS42S83200J, IS42S16160J IS45S83200J, IS45S16160J ### **PIN FUNCTIONS** | Symbol | Туре | Function (In Detail) | |------------------------|--------------|--| | A0-A12 | Input | Address Inputs: A0-A12 are sampled during the ACTIVE command (row-address A0-A12) and READ/WRITE command (column address A0-A9 (x8), or A0-A8 (x16); with A10 defining auto precharge) to select one location out of the memory array in the respective bank. A10 is sampled during a PRECHARGE command to determine if all banks are to be precharged (A10 HIGH) or bank selected by BA0, BA1 (LOW). The address inputs also provide the op-code during a LOAD MODE REGISTER command. | | BA0, BA1 | Input | Bank Select Address: BA0 and BA1 defines which bank the ACTIVE, READ, WRITE or PRECHARGE command is being applied. | | CAS | Input | $\overline{\text{CAS}}$, in conjunction with the $\overline{\text{RAS}}$ and $\overline{\text{WE}}$, forms the device command. See the "Command Truth Table" for details on device commands. | | CKE | Input | The CKE input determines whether the CLK input is enabled. The next rising edge of the CLK signal will be valid when is CKE HIGH and invalid when LOW. When CKE is LOW, the device will be in either power-down mode, clock suspend mode, or self refresh mode. CKE is an asynchronous input. | | CLK | Input | CLK is the master clock input for this device. Except for CKE, all inputs to this device are acquired in synchronization with the rising edge of this pin. | | CS | Input | The $\overline{\text{CS}}$ input determines whether command input is enabled within the device. Command input is enabled when $\overline{\text{CS}}$ is LOW, and disabled with $\overline{\text{CS}}$ is HIGH. The device remains in the previous state when $\overline{\text{CS}}$ is HIGH. | | DQML, | Input | DQML and DQMH control the lower and upper bytes of the I/O buffers. In read | | DQMH | | mode,DQML and DQMH control the output buffer. WhenDQML orDQMH is LOW, the corresponding buffer byte is enabled, and when HIGH, disabled. The outputs go to the HIGH impedance state whenDQML/DQMH is HIGH. This function corresponds to \overline{OE} in conventional DRAMs. In write mode,DQML and DQMH control the input buffer When DQML or DQMH is LOW, the corresponding buffer byte is enabled, and data can be written to the device. WhenDQML or DQMH is HIGH, input data is masked and cannot be written to the device. For x16 only. | | DQM | Input | For x8 only. | | DQ0-DQ7 or
DQ0-DQ15 | Input/Output | Data on the Data Bus is latched on DQ pins during Write commands, and buffered for output after Read commands. | | RAS | Input | $\overline{\text{RAS}}$, in conjunction with $\overline{\text{CAS}}$ and $\overline{\text{WE}}$, forms the device command. See the "Command Truth Table" item for details on device commands. | | WE | Input | $\overline{\text{WE}}$, in conjunction with $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$, forms the device command. See the "Command Truth Table" item for details on device commands. | | VDDQ | Power Supply | VDDQ is the output buffer power supply. | | VDD | Power Supply | V _{DD} is the device internal power supply. | | Vssq | Power Supply | Vssa is the output buffer ground. | | Vss | Power Supply | Vss is the device internal ground. | #### GENERAL DESCRIPTION #### **READ** The READ command selects the bank from BA0, BA1 inputs and starts a burst read access to an active row. Inputs A0-A9 (x8); A0-A8 (x16) provides the starting column location. When A10 is HIGH, this command functions as an AUTO PRECHARGE command. When the auto precharge is selected, the row being accessed will be precharged at the end of the READ burst. The row will remain open for subsequent accesses when AUTO PRECHARGE is not selected. DQ's read data is subject to the logic level on the DQM inputs two clocks earlier. When a given DQM signal was registered HIGH, the corresponding DQ's will be High-Z two clocks later. DQ's will provide valid data when the DQM signal was registered LOW. #### WRITE A burst write access to an active row is initiated with the WRITE command. BA0, BA1 inputs selects the bank, and the starting column location is provided by inputs A0-A9 (x8); A0-A8 (x16). Whether or not AUTO-PRECHARGE is used is determined by A10. The row being accessed will be precharged at the end of the WRITE burst, if AUTO PRECHARGE is selected. If AUTO PRECHARGE is not selected, the row will remain open for subsequent accesses. A memory array is written with corresponding input data on DQ's and DQM input logic level appearing at the same time. Data will be written to memory when DQM signal is LOW. When DQM is HIGH, the corresponding data inputs will be ignored, and a WRITE will not be executed to that byte/column location. #### **PRECHARGE** The PRECHARGE command is used to deactivate the open row in a particular bank or the open row in all banks. BA0, BA1 can be used to select which bank is precharged or they are treated as "Don't Care". A10 determined whether one or all banks are precharged. After executing this command, the next command for the selected bank(s) is executed after passage of the period t_{RP}, which is the period required for bank precharging. Once a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to that bank. #### **AUTO PRECHARGE** The AUTO PRECHARGE function ensures that the precharge is initiated at the earliest valid stage within a burst. This function allows for individual-bank precharge without requiring an explicit command. A10 to enable the AUTO PRECHARGE function in conjunction with a specific READ or WRITE command. For each individual READ or WRITE command, auto precharge is either enabled or disabled. AUTO PRECHARGE does not apply except in full-page burst mode. Upon completion of the READ or WRITE burst, a precharge of the bank/row that is addressed is automatically performed. #### **AUTO REFRESH COMMAND** This command executes the AUTO REFRESH operation. The row address and bank to be refreshed are automatically generated during this operation. The stipulated period (tRc) is required for a single refresh operation, and no other commands can be executed during this period. This command is executed at least 8192 times for every TREF. During an AUTO REFRESH command, address bits are "Don't Care". This command corresponds to CBR Auto-refresh. #### **BURST TERMINATE** The BURST TERMINATE command forcibly terminates the burst read and write operations by truncating either fixed-length or full-page bursts and the most recently registered READ or WRITE command prior to the BURST TERMINATE. #### **COMMAND INHIBIT** COMMAND INHIBIT prevents new commands from being executed. Operations in progress are not affected, apart from whether the CLK signal is enabled #### **NO OPERATION** When $\overline{\text{CS}}$ is low, the NOP command prevents unwanted commands from being registered during idle or wait states. #### **LOAD MODE REGISTER** During the LOAD MODE REGISTER command the mode register is loaded from A0-A12. This command can only be issued when all banks are idle. #### **ACTIVE COMMAND** When the ACTIVE COMMAND is activated, BA0, BA1 inputs selects a bank to be accessed, and the address inputs on A0-A12 selects the row. Until a PRECHARGE command is issued to the bank, the row remains open for accesses. #### **COMMAND TRUTH TABLE** | | CKE | | | | | | | | | A12, A11 | |-----------------------------|-------|---|----|-----|-----|----|-----|-----|-----|----------| | Function | n – 1 | n | CS | RAS | CAS | WE | BA1 | BA0 | A10 | A9 - A0 | | Device deselect (DESL) | Н | × | Н | × | × | × | × | × | × | × | | No operation (NOP) | Н | × | L | Н | Н | Н | × | × | × | × | | Burst stop (BST) | Н | × | L | Н | Н | L | × | × | × | × | | Read | Н | × | L | Н | L | Н | V | V | L | V | | Read with auto precharge | Н | × | L | Н | L | Н | V | V | Н | V | | Write | Н | × | L | Н | L | L | V | V | L | V | | Write with auto precharge | Н | × | L | Н | L | L | V | V | Н | V | | Bank activate (ACT) | Н | × | L | L | Н | Н | V | V | V | V | | Precharge select bank (PRE) |) H | × | L | L | Н | L | V | V | L | × | | Precharge all banks (PALL) | Н | × | L | L | Н | L | × | × | Н | × | | CBR Auto-Refresh (REF) | Н | Н | L | Ĺ | Ĺ | Н | × | × | × | × | | Self-Refresh (SELF) | Н | L | L | Ĺ | Ĺ | Н | × | × | × | × | | Mode register set (MRS) | Н | × | L | Ĺ | Ĺ | Ĺ | Ĺ | Ĺ | L | V | Note: $H=V_{IH}$, $L=V_{IL}$ $x=V_{IH}$ or V_{IL} , $V=V_{alid}$ Data. #### **DQM TRUTH TABLE** | | CKE | | | | | |---|-----|---|------|------|--| | Function | n-1 | n | DQMH | DQML | | | Data write / output enable | Н | × | L | L | | | Data mask / output disable | Н | × | Н | Н | | | Upper byte write enable / output enable | Н | × | L | × | | | Lower byte write enable / output enable | Н | × | × | L | | | Upper byte write inhibit / output disable | Н | × | Н | × | | | Lower byte write inhibit / output disable | Н | × | × | Н | | | Lower byte write innibit / output disable | Н | × | × | Н | | Note: H=VIH, L=VIL x= VIH or VIL, V = Valid Data. #### **CKE TRUTH TABLE** | | CKE | | | | | | | |-------------------------------------|-------|---|----|-----|-----|----|---------| | Current State /Function | n – 1 | n | CS | RAS | CAS | WE | Address | | Activating Clock suspend mode entry | Н | L | × | × | × | × | × | | Any Clock suspend mode | L | L | × | × | × | × | × | | Clock suspend mode exit | L | Н | × | × | × | × | × | | Auto refresh command Idle (REF) | Н | Н | L | L | L | Н | × | | Self refresh entry Idle (SELF) | Н | L | L | L | L | Н | × | | Power down entry Idle | Н | L | × | × | × | × | × | | Self refresh exit | L | Н | L | Н | Н | Н | × | | | L | Н | Н | × | × | × | × | | Power down exit | Ĺ | Н | × | × | × | × | × | Note: $H=V_{IH}$, $L=V_{IL}$ $x=V_{IH}$ or V_{IL} , $V=V_{alid}$ Data. #### **FUNCTIONAL TRUTH TABLE** | Current State | CS | RAS | CAS | WE | Address | Command | Action | |---------------|------------|-----|-----|----|-------------|-------------|---| | ldle | Н | Χ | Χ | Χ | Х | DESL | Nop or Power Down ⁽²⁾ | | | _L | Н | Н | Н | Χ | NOP | Nop or Power Down ⁽²⁾ | | | _L | Н | Н | L | Х | BST | Nop or Power Down | | | _ <u>L</u> | Н | L | Н | BA, CA, A10 | READ/READA | ILLEGAL (3) | | | _ <u>L</u> | Н | L | L | A, CA, A10 | WRIT/ WRITA | ILLEGAL ⁽³⁾ | | | _ <u>L</u> | L | Н | Н | BA, RA | ACT | Row activating | | | L | L | Н | L | BA, A10 | PRE/PALL | Nop | | | _L | L | L | Н | Х | REF/SELF | Auto refresh or Self-refresh ⁽⁴⁾ | | | L | L | L | L | OC, BA1=L | MRS | Mode register set | | Row Active | <u>H</u> | Χ | Х | Χ | Χ | DESL | Nop | | | _ <u>L</u> | Н | Н | Н | Χ | NOP | Nop | | | L | Н | Н | L | Χ | BST | Nop | | | L | Н | L | Н | BA, CA, A10 | READ/READA | Begin read (5) | | | L | Н | L | L | BA, CA, A10 | WRIT/ WRITA | Begin write (5) | | | L | L | Н | Н | BA, RA | ACT | ILLEGAL (3) | | | L | L | Н | L | BA, A10 | PRE/PALL | Precharge
Precharge all banks ⁽⁶⁾ | | | L | L | L | Н | Χ | REF/SELF | ILLEGAL | | | L | L | L | L | OC, BA | MRS | ILLEGAL | | Read | Н | Х | Χ | X | Х | DESL | Continue burst to end to
Row active | | | L | Н | Н | Н | Х | NOP | Continue burst to end Row Row active | | | L | Н | Н | L | Χ | BST | Burst stop, Row active | | | L | Н | L | Н | BA, CA, A10 | READ/READA | Terminate burst,
begin new read ⁽⁷⁾ | | | L | Н | L | L | BA, CA, A10 | WRIT/WRITA | Terminate burst,
begin write (7,8) | | | L | L | Н | Н | BA, RA | ACT | ILLEGAL (3) | | | L | L | Н | L | BA, A10 | PRE/PALL | Terminate burst
Precharging | | | L | L | L | Н | Х | REF/SELF | ILLEGAL | | | L | L | L | L | OC, BA | MRS | ILLEGAL | | Write | Н | Х | Х | Х | Х | DESL | Continue burst to end Write recovering | | | L | Н | Н | Н | Х | NOP | Continue burst to end Write recovering | | | L | Н | Н | L | Х | BST | Burst stop, Row active | | | L | Н | L | Н | BA, CA, A10 | READ/READA | Terminate burst, start read : Determine AP (7,8) | | | L | Н | L | L | BA, CA, A10 | WRIT/WRITA | Terminate burst, new write :
Determine AP (7) | | | L | L | Н | Н | BA, RA | RA ACT | ILLEGAL (3) | | | L | L | Н | L | BA, A10 | PRE/PALL | Terminate burst Precharging (9) | | | | | | Н | X | REF/SELF | ULEON. | | | L | L | L | П | ^ | NEF/SELF | ILLEGAL | Note: H=ViH, L=ViL x= ViH or ViL, V = Valid Data, BA= Bank Address, CA+Column Address, RA=Row Address, OC= Op-Code #### **FUNCTIONAL TRUTH TABLE Continued:** | Current State | CS | RAS | CAS | WE | Address | Command | Action | |------------------------------|----|-----|-----|----|-------------|-------------|---| | Read with auto Precharging | Н | × | × | × | × | DESL | Continue burst to end, Precharge | | | L | Н | Н | Н | х | NOP | Continue burst to end, Precharge | | | L | Н | Н | L | × | BST | ILLEGAL | | | L | Н | L | Н | BA, CA, A10 | READ/READA | ILLEGAL (11) | | | L | Н | L | L | BA, CA, A10 | WRIT/ WRITA | ILLEGAL (11) | | | L | L | Н | Н | BA, RA | ACT | ILLEGAL (3) | | | L | L | Н | L | BA, A10 | PRE/PALL | ILLEGAL (11) | | | L | L | L | Н | × | REF/SELF | ILLEGAL | | | L | L | L | L | OC, BA | MRS | ILLEGAL | | Write with Auto
Precharge | Н | × | × | × | × | DESL | Continue burst to end, Write recovering with auto precharge | | | L | Н | Н | Н | × | NOP | Continue burst to end, Write recovering with auto precharge | | | L | Н | Н | L | × | BST | ILLEGAL | | | L | Н | L | Н | BA, CA, A10 | READ/READA | ILLEGAL ⁽¹¹⁾ | | | L | Н | L | L | BA, CA, A10 | WRIT/ WRITA | ILLEGAL (11) | | | L | L | Н | Н | BA, RA | ACT | ILLEGAL (3,11) | | | L | L | Н | L | BA, A10 | PRE/PALL | ILLEGAL (3,11) | | | L | L | L | Н | × | REF/SELF | ILLEGAL | | | L | L | L | L | OC, BA | MRS | ILLEGAL | | Precharging | Н | × | × | × | × | DESL | Nop, Enter idle after tRP | | | L | Н | Н | Н | × | NOP | Nop, Enter idle after tRP | | | L | Н | Н | L | × | BST | Nop, Enter idle after tRP | | | L | Н | L | Н | BA, CA, A10 | READ/READA | ILLEGAL (3) | | | L | Н | L | L | BA, CA, A10 | WRIT/WRITA | ILLEGAL (3) | | | L | L | Н | Н | BA, RA | ACT | ILLEGAL ⁽³⁾ | | | L | L | Н | L | BA, A10 | PRE/PALL | Nop Enter idle after tRP | | | L | L | L | Н | × | REF/SELF | ILLEGAL | | | L | L | L | L | OC, BA | MRS | ILLEGAL | | Row Activating | Н | × | × | × | × | DESL | Nop, Enter bank active after tRCD | | | L | Н | Н | Н | × | NOP | Nop, Enter bank active after tRCD | | | L | Н | Н | L | × | BST | Nop, Enter bank active after tRCD | | | L | Н | L | Н | BA, CA, A10 | READ/READA | ILLEGAL (3) | | | L | Н | L | L | BA, CA, A10 | WRIT/WRITA | ILLEGAL (3) | | | L | L | Н | Н | BA, RA | ACT | ILLEGAL (3,9) | | | L | L | Н | L | BA, A10 | PRE/PALL | ILLEGAL (3) | | | | L | L | Н | × | REF/SELF | ILLEGAL | | | L | L | L | L | OC, BA | MRS | ILLEGAL | $Note: H=V_{IH}, \ L=V_{IL} \ x=V_{IH} \ or \ V_{IL}, \ V=Valid \ Data, \ BA=Bank \ Address, \ CA+Column \ Address, \ RA=Row \ Address, \ OC=Op-Code$ #### **FUNCTIONAL TRUTH TABLE Continued:** | Current State | CS | RAS | CAS | WE | Address | Command | Action | |------------------|----|-----|-----|----|-------------|-------------------------|----------------------------------| | Write Recovering | Н | × | × | × | × | DESL | Nop, Enter row active after tDPL | | | L | Н | Н | Н | × | NOP | Nop, Enter row active after tDPL | | | L | Н | Н | L | × | BST | Nop, Enter row active after tDPL | | | L | Н | L | Н | BA, CA, A10 | READ/READA | Begin read (8) | | | L | Н | L | L | BA, CA, A10 | WRIT/ WRITA | Begin new write | | | L | L | Н | Н | BA, RA | ACT | ILLEGAL (3) | | | L | L | Н | L | BA, A10 | PRE/PALL | ILLEGAL (3) | | | L | L | L | Н | × | REF/SELF | ILLEGAL | | | L | L | L | L | OC, BA | MRS | ILLEGAL | | Write Recovering | Н | × | × | × | × | DESL | Nop, Enter precharge after tDPL | | with Auto | L | Н | Н | Н | × | NOP | Nop, Enter precharge after tDPL | | Precharge | L | Н | Н | L | × | BST | Nop, Enter row active after tDPL | | | L | Н | L | Н | BA, CA, A10 | READ/READA | ILLEGAL(3,8,11) | | | L | Н | L | L | BA, CA, A10 | WRIT/WRITA | ILLEGAL (3,11) | | | L | L | Н | Н | BA, RA | ACT | ILLEGAL (3,11) | | | L | L | Н | L | BA, A10 | PRE/PALL | ILLEGAL (3,11) | | | L | L | L | Н | × | REF/SELF | ILLEGAL | | | L | L | L | L | OC, BA | MRS | ILLEGAL | | Refresh | Н | × | × | × | × | DESL | Nop, Enter idle after tRC | | | L | Н | Н | × | × | NOP/BST | Nop, Enter idle after tRC | | | L | Н | L | Н | BA, CA, A10 | READ/READA | ILLEGAL | | | L | Н | L | L | BA, CA, A10 | WRIT/WRITA | ILLEGAL | | | L | L | Н | Н | BA, RA | ACT | ILLEGAL | | | L | L | Н | L | BA, A10 | PRE/PALL | ILLEGAL | | | L | L | L | Н | × | REF/SELF | ILLEGAL | | | L | L | L | L | OC, BA | MRS | ILLEGAL | | Mode Register | Н | × | × | × | × | DESL | Nop, Enter idle after 2 clocks | | Accessing | L | Н | Н | Н | × | NOP | Nop, Enter idle after 2 clocks | | | L | Н | Н | L | × | BST | ILLEGAL | | | L | Н | L | × | BA, CA, A10 | READ/WRITE | ILLEGAL | | | L | L | × | × | BA, RA | ACT/PRE/PALL
REF/MRS | ILLEGAL | Note: H=VIH, L=VIL x= VIH or VIL, V = Valid Data, BA= Bank Address, CA+Column Address, RA=Row Address, OC= Op-Code #### Notes - 1. All entries assume that CKE is active (CKEn-1=CKEn=H). - 2. If both banks are idle, and CKE is inactive (Low), the device will enter Power Down mode. All input buffers except CKE will be disabled. - 3. Illegal to bank in specified states; Function may be legal in the bank indicated by Bank Address (BA), depending on the state of that bank. - 4. If both banks are idle, and CKE is inactive (Low), the device will enter Self-Refresh mode. All input buffers except CKE will be disabled. - 5. Illegal if tRCD is not satisfied. - 6. Illegal if tRAS is not satisfied. - 7. Must satisfy burst interrupt condition. - 8. Must satisfy bus contention, bus turn around, and/or write recovery requirements. - 9. Must mask preceding data which don't satisfy tDPL. - 10. Illegal if tRRD is not satisfied. - 11. Illegal for single bank, but legal for other banks. #### CKE RELATED COMMAND TRUTH TABLE(1) | | | СК | Œ | | | | | | |-----------------------|--|-----|---|----|-----|-----|-----------------|-----------| | Current State | Operation | n-1 | n | CS | RAS | CAS | \overline{WE} | Address | | Self-Refresh (S.R.) | INVALID, CLK (n - 1) would exit S.R. | Н | Χ | Х | Х | Х | Х | Х | | | Self-Refresh Recovery ⁽²⁾ | L | Н | Н | Χ | Χ | Χ | Χ | | | Self-Refresh Recovery ⁽²⁾ | L | Н | L | Н | Н | Χ | Χ | | | Illegal | L | Н | L | Н | L | Χ | Χ | | | Illegal | L | Н | L | L | Χ | Χ | Χ | | | Maintain S.R. | L | L | Χ | Χ | Χ | Χ | Χ | | Self-Refresh Recovery | / Idle After trc | Н | Н | Н | Χ | Χ | Х | Χ | | | Idle After tro | Н | Н | L | Н | Н | Χ | Χ | | | Illegal | Н | Н | L | Н | L | Χ | Χ | | | Illegal | Н | Н | L | L | Χ | Χ | Χ | | | Begin clock suspend next cycle ⁽⁵⁾ | Н | L | Н | Χ | Χ | Χ | Χ | | | Begin clock suspend next cycle ⁽⁵⁾ | Н | L | L | Н | Н | Χ | Χ | | | Illegal | Н | L | L | Н | L | Χ | Χ | | | Illegal | Н | L | L | L | Χ | Χ | Χ | | | Exit clock suspend next cycle(2) | L | Н | Χ | Χ | Χ | Χ | Χ | | | Maintain clock suspend | L | L | Χ | Χ | Χ | Χ | Χ | | Power-Down (P.D.) | INVALID, CLK (n - 1) would exit P.D. | Н | Χ | Χ | Х | Χ | Х | _ | | | EXIT P.D> Idle ⁽²⁾ | L | Н | Χ | Χ | Χ | Χ | Χ | | | Maintain power down mode | L | L | Χ | Χ | Χ | Χ | Χ | | All Banks Idle | Refer to operations in Operative Command Table | Н | Н | Н | Χ | Χ | Χ | _ | | | Refer to operations in Operative Command Table | Н | Н | L | Н | Χ | Χ | _ | | | Refer to operations in Operative Command Table | Н | Н | L | L | Н | Χ | _ | | | Auto-Refresh | Н | Н | L | L | L | Н | Χ | | | Refer to operations in Operative Command Table | Н | Н | L | L | L | L | Op - Code | | | Refer to operations in Operative Command Table | Н | L | Н | Χ | Χ | Χ | _ | | | Refer to operations in Operative Command Table | Н | L | L | Н | Χ | Χ | _ | | | Refer to operations in Operative Command Table | Н | L | L | L | Н | Χ | _ | | | Self-Refresh ⁽³⁾ | Н | L | L | L | L | Н | Χ | | | Refer to operations in Operative Command Table | Н | L | L | L | L | L | Op - Code | | | Power-Down ⁽³⁾ | L | Χ | Χ | Χ | Χ | Χ | Χ | | Any state | Refer to operations in Operative Command Table | Н | Н | Χ | Х | Х | Χ | Х | | other than | Begin clock suspend next cycle ⁽⁴⁾ | Н | L | Χ | Χ | Χ | Χ | Χ | | listed above | Exit clock suspend next cycle | L | Н | Χ | Χ | Χ | Χ | Χ | | | Maintain clock suspend | L | L | Χ | Χ | Χ | Х | Χ | #### Notes: - H : High level, L : low level, X : High or low level (Don't care). CKE Low to High transition will re-enable CLK and other inputs asynchronously. A minimum setup time must be satisfied before any command other than EXIT. - 3. Power down and Self refresh can be entered only from the both banks idle state. - 4. Must be legal command as defined in Operative Command Table. - 5. Illegal if txsR is not satisfied. #### **STATE DIAGRAM** #### ABSOLUTE MAXIMUM RATINGS(1) | Symbol | Parameters | | Rating | Unit | | |------------------|--------------------------------|------------|-------------------------------|------|--| | VDD MAX | Maximum Supply Voltage | | -0.5 to +4.6 | V | | | V DDQ MAX | Maximum Supply Voltage for Out | out Buffer | -0.5 to +4.6 | V | | | VIN | Input Voltage | | -0.5 to V _{DD} + 0.5 | V | | | V out | Output Voltage | | -1.0 to VDDQ + 0.5 | V | | | PD MAX | Allowable Power Dissipation | | 1 | W | | | Ics | Output Shorted Current | | 50 | mA | | | Topr | Operating Temperature | Com. | 0 to +70 | °C | | | | | Ind. | -40 to +85 | | | | | | A1 | -40 to +85 | | | | | | A2 | -40 to +105 | | | | Тѕтс | Storage Temperature | | -65 to +150 | °C | | #### Notes: #### DC RECOMMENDED OPERATING CONDITIONS $(T_A = 0^{\circ}C \text{ to } +70^{\circ}C \text{ for Commercial grade. } T_A = -40^{\circ}C \text{ to } +85^{\circ}C \text{ for Industrial and A1 grade. } T_A = -40^{\circ}C \text{ to } +105^{\circ}C \text{ for A2 grade.})$ | Symbol | Parameter | Min. | Тур. | Max. | Unit | | |---------------------------------|--------------------|------|------|------------|------|--| | V _{DD} | Supply Voltage | 3.0 | 3.3 | 3.6 | V | | | VDDQ | I/O Supply Voltage | 3.0 | 3.3 | 3.6 | V | | | VIH ⁽¹⁾ | Input High Voltage | 2.0 | _ | VDDQ + 0.3 | V | | | V _I L ⁽²⁾ | Input Low Voltage | -0.3 | _ | +0.8 | V | | #### Note: - 1. VIH (overshoot): VIH (max) = VDDQ + 1.2V (PULSE WIDTH $\leq 3ns$). - 2. VIL (undershoot): VIL (min) = -1.2V (PULSE WIDTH $\leq 3ns$). - 3. All voltages are referenced to Vss. #### **CAPACITANCE CHARACTERISTICS** (At TA = 0 to $+25^{\circ}$ C, VDD = VDDQ = 3.3 ± 0.3 V) | Symbol | Parameter | Min. | Max. | Unit | | |--------|--|------|------|------|--| | CIN1 | Input Capacitance: CLK | 2.0 | 4.0 | pF | | | CIN2 | Input Capacitance:All other input pins | 1.5 | 4.0 | pF | | | CI/O | Data Input/Output Capacitance: DQ's | 4.0 | 6.0 | pF | | #### **THERMAL RESISTANCE** (At TA = 0 to $+25^{\circ}$ C, VDD = VDDQ = 3.3 ± 0.3 V) | Package | Substrate | Theta-ja
(Airflow = 0m/s) | Theta-ja
(Airflow = 1m/s) | Theta-ja
(Airflow = 2m/s) | Theta-jc | Units | |--------------------|-----------|------------------------------|------------------------------|------------------------------|----------|-------| | Alloy42 TSOP2 (54) | 4-layer | 74.6 | 67.4 | 63.5 | 12.3 | C/W | | Copper TSOP2 (54) | 4-layer | 50.2 | 44.9 | 42.3 | 10.8 | C/W | | BGA (54) | 4-layer | 41.3 | 37.4 | 35.1 | 11.3 | C/W | Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. ^{2.} All voltages are referenced to Vss. #### DC ELECTRICAL CHARACTERISTICS 1(1,3) (Recommended Operation Conditions unless otherwise noted.) | Symbol | Parameter | Test Condition | -6 | -7 | Unit | | |-----------|---|---|-----|-----|------|--| | IDD1 (1) | Operating Current | One bank active, CL = 3, BL = 1, | 100 | 90 | mA | | | | | tclk = tclk (min), tRC = tRC (min) | | | | | | IDD2P | Precharge Standby Current (In Power-Down Mode)4 | CKE \leq VIL (MAX), tck = 15ns | 4 | 4 | mA | | | IDD2PS | Precharge Standby Current (In Power-Down Mode) | $CKE \leq VIL \ \ \text{(MAX)}, \ CLK \leq VIL \ \ \text{(MAX)}$ | 4 | 4 | mA | | | DD2N (2) | Precharge Standby Current | $\overline{\text{CS}} \geq \text{Vcc} - 0.2\text{V}, \text{ CKE} \geq \text{ Vih (MIN)}$ | 25 | 25 | mA | | | | (In Non Power-Down Mode) | tcκ = 15ns | | | | | | IDD2NS | Precharge Standby Current | $\overline{\text{CS}} \geq \text{Vcc} - 0.2 \text{V}, \text{ CKE} \geq \text{ Vih (MIN)}$ | 15 | 15 | mA | | | | (In Non Power-Down Mode) | or CKE \leq VIL (MAX), All inputs stable | | | | | | IDD3P | Active Standby Current | CKE \leq VIL (MAX), tck = 15ns | 8 | 8 | mA | | | | (Power-Down Mode) | | | | | | | IDD3PS | Active Standby Current | $CKE \le V_{IL}$ (MAX), $CLK \le V_{IL}$ (MAX) | 8 | 8 | mA | | | | (Power-Down Mode) | | | | | | | IDD3N (2) | Active Standby Current | $\overline{\text{CS}} \geq \text{Vcc} - 0.2 \text{V}, \text{ CKE} \geq \text{ Vih (MIN)}$ | 30 | 30 | mA | | | | (In Non Power-Down Mode) | tcκ = 15ns | | | | | | IDD3NS | Active Standby Current | $\overline{\text{CS}} \geq \text{Vcc} - 0.2 \text{V}, \text{ CKE} \geq \text{ Vih (MIN)}$ | 20 | 20 | mA | | | | (In Non Power-Down Mode) | or CKE \leq VIL (MAX), All inputs stable | | | | | | IDD4 | Operating Current | All banks active, BL = 4, CL = 3, | 140 | 120 | mA | | | | | tck = tck (min) | | | | | | IDD5 | Auto-Refresh Current | trc = trc (min), tclk = tclk (min) | 100 | 85 | mA | | | IDD6 | Self-Refresh Current | CKE ≤ 0.2V | 5 | 5 | mA | | #### Notes: - 1. IDD (MAX) is specified at the output open condition. - 2. Input signals are changed one time during 30ns. - 3. For A2 temperature grade with Ta > 85°C: IDD1, IDD3P, IDD3Ps, and IDD4 are derated to 10% above these values; IDD2P, IDD2Ps, and IDD6 are derated to 25% above these values. #### DC ELECTRICAL CHARACTERISTICS 2 (Recommended Operation Conditions unless otherwise noted.) | Symbol | Parameter | Test Condition | Min | Max | Unit | | |--------|---------------------------|---|-----|-----|------|--| | lıL | Input Leakage Current | $0V \le Vin \le Vcc$, with pins other than | -5 | 5 | μΑ | | | | | the tested pin at 0V | | | | | | lol | Output Leakage Current | Output is disabled, $0V \le Vout \le Vcc$, | -5 | 5 | μΑ | | | Vон | Output High Voltage Level | Iон = -2mA | 2.4 | _ | V | | | VoL | Output Low Voltage Level | IoL = 2mA | _ | 0.4 | V | | ### IS42S83200J, IS42S16160J IS45S83200J, IS45S16160J ### **AC ELECTRICAL CHARACTERISTICS** (1,2,3) | | | | | 6 | | | | |------------------|---|----------------------|------|------|------|------|-------| | Symbol | Parameter | | Min. | Max. | Min. | Max. | Units | | tскз | Clock Cycle Time | CAS Latency = 3 | 6 | _ | 7 | _ | ns | | tck2 | | CAS Latency = 2 | 10 | _ | 7.5 | _ | ns | | tасз | Access Time From CLK | CAS Latency = 3 | _ | 5.4 | _ | 5.4 | ns | | tAC2 | | CAS Latency = 2 | | 5.4 | | 5.4 | ns | | tсн | CLK HIGH Level Width | | 2.5 | _ | 2.5 | _ | ns | | tcL | CLK LOW Level Width | | 2.5 | | 2.5 | | ns | | tонз | Output Data Hold Time | CAS Latency = 3 | 2.5 | _ | 2.5 | _ | ns | | toH2 | 0 : :10;;;; | CAS Latency = 2 | 2.5 | | 2.5 | _ | ns | | tız | Output LOW Impedance Time | | 0 | | 0 | | ns | | tHZ3 | Output HIGH Impedance Time | CAS Latency = 3 | 2.5 | 5.4 | 2.5 | 5.4 | ns | | tHZ2 | | CAS Latency = 2 | 2.5 | 5.4 | 2.5 | 5.4 | ns | | tos | Input Data Setup Time(2) | | 1.5 | _ | 1.5 | _ | ns | | tрн | Input Data Hold Time(2) | | 0.8 | _ | 0.8 | _ | ns | | tas | Address Setup Time(2) | | 1.5 | _ | 1.5 | _ | ns | | tah | Address Hold Time(2) | | 0.8 | _ | 0.8 | _ | ns | | tcks | CKE Setup Time ⁽²⁾ | | 1.5 | _ | 1.5 | _ | ns | | tckH | CKE Hold Time ⁽²⁾ | | 0.8 | _ | 0.8 | _ | ns | | tcms | Command Setup Time (CS, RA | S, CAS, WE, DQM)(2) | 1.5 | _ | 1.5 | _ | ns | | tсмн | Command Hold Time (CS, RAS | , CAS, WE, DQM)(2) | 0.8 | _ | 0.8 | _ | ns | | trc | Command Period (REF to REF | / ACT to ACT) | 60 | _ | 60 | _ | ns | | tras | Command Period (ACT to PRE) | | 42 | 100K | 37 | 100K | ns | | trp | Command Period (PRE to ACT) | | 18 | _ | 15 | _ | ns | | trcd | Active Command To Read / Writ | e Command Delay Time | 18 | _ | 15 | _ | ns | | trrd | Command Period (ACT [0] to A | CT[1]) | 12 | _ | 14 | _ | ns | | topl | Input Data To Precharge | | 12 | _ | 14 | _ | ns | | | Command Delay time | | | | | | | | t _{DAL} | Input Data To Active / Refresh Command Delay time (During A | uto-Precharge) | 30 | _ | 30 | _ | ns | | tmrd | Mode Register Program Time | | 12 | _ | 14 | _ | ns | | tdde | Power Down Exit Setup Time | | 6 | _ | 7 | _ | ns | | txsr | Exit Self-Refresh to Active Time (4) | | 66 | | 70 | _ | ns | | tτ | Transition Time | | 0.3 | 1.2 | 0.3 | 1.2 | ns | | tref | Refresh Cycle Time (8192) | | | | | | | | | $T_A \le 70^{\circ}C$ Com., Ind., A | | _ | 64 | _ | 64 | ms | | | TA $\leq 85^{\circ}$ C Ind., A1, A2 | 2 | _ | 64 | _ | 64 | ms | | | Ta > 85°C A2 | | _ | 32 | | 32 | ms | - 1. The power-on sequence must be executed before starting memory operation. - Measured with t_T = 1 ns. If clock rising time is longer than 1ns, (t_T /2 0.5) ns should be added to the parameter. The reference level is 1.4V when measuring input signal timing. Rise and fall times are measured between V_{IH}(min.) and V_{IL}(max). - 4. Self-Refresh Mode is not supported for A2 grade with Ta > 85°C ### IS42S83200J, IS42S16160J IS45S83200J, IS45S16160J #### **OPERATING FREQUENCY / LATENCY RELATIONSHIPS** | SYMBOL | - PARAMETER | | -6 | -7 | UNITS | |--------------|---|-----------------|-----|-----|--| | tcĸ | Clock Cycle Time | CAS Latency = 3 | 6 | 7 | ns | | | | CAS Latency = 2 | 10 | 7.5 | | | Freq. | Operating Frequency | CAS Latency = 3 | 166 | 143 | MHz | | | | CAS Latency = 2 | 100 | 133 | | | trcd | Active Command To Read/Write Command Delay Time | CAS Latency = 3 | 3 | 3 | cycle | | | | CAS Latency = 2 | 2 | 2 | | | trac | RAS Latency (tRCD + tCAC) | CAS Latency = 3 | 6 | 6 | cycle | | | , | CAS Latency = 2 | 4 | 4 | · | | trc | Command Period (REF to REF / ACT to ACT) | CAS Latency = 3 | 10 | 9 | cycle | | | , | CAS Latency = 2 | 6 | 8 | ., | | tras | Command Period (ACT to PRE) | CAS Latency = 3 | 7 | 6 | cycle | | 1110 | command to mod (No tho this) | CAS Latency = 2 | 5 | 5 | 0,010 | | trp | Command Period (PRE to ACT) | CAS Latency = 3 | 3 | 3 | cycle | | u II | Communa Fortos (FFIE to NOT) | CAS Latency = 2 | 2 | 2 | Oyolo | | trrd | Command Period (ACT[0] to ACT [1]) | , | 2 | 2 | cycle | | tccp | Column Command Delay Time | | 1 | 1 | cycle | | toob | (READ, READA, WRIT, WRITA) | | ' | ' | Cyclo | | tDPL | Input Data To Precharge Command Delay Time | | 2 | 2 | cycle | | t DAL | Input Data To Active/Refresh Command Delay Time | CAS Latency = 3 | 5 | 5 | cycle | | | (During Auto-Precharge) | CAS Latency = 2 | 4 | 4 | • | | trbd | Burst Stop Command To Output in HIGH-Z Delay Time | CAS Latency = 3 | 3 | 3 | cycle | | | (Read) | CAS Latency = 2 | 2 | 2 | , | | twbD | Burst Stop Command To Input in Invalid Delay Time | | 0 | 0 | cycle | | | (Write) | | | | , | | trqL | Precharge Command To Output in HIGH-Z Delay Time | CAS Latency = 3 | 3 | 3 | cycle | | | (Read) | CAS Latency = 2 | 2 | 2 | 5,5.5 | | twpl | Precharge Command To Input in Invalid Delay Time | • | 0 | 0 | cycle | | | (Write) | | · | · | 0,0.0 | | tpqL | Last Output To Auto-Precharge Start Time (Read) | CAS Latency = 3 | -2 | -2 | cycle | | | . , | CAS Latency = 2 | -1 | -1 | <u>, </u> | | tqmd | DQM To Output Delay Time (Read) | | 2 | 2 | cycle | | tомо | DQM To Input Delay Time (Write) | | 0 | 0 | cycle | | tmrd | Mode Register Set To Command Delay Time | | 2 | 2 | cycle | Note: The number of clock cycles shown in this table are examples based on tCK values in this table and the timing limits from AC Electrical Characteristics table. #### **ACTEST CONDITIONS** ### **Input Load** ### **Output Load** ### **ACTEST CONDITIONS** | Parameter | Rating | |---|------------| | AC Input Levels | 0V to 3.0V | | Input Rise and Fall Times | 1 ns | | Input Timing Reference Level | 1.4V | | Output Timing Measurement Reference Level | 1.4V | #### **FUNCTIONAL DESCRIPTION** The 256Mb SDRAMs are quad-bank DRAMs which operate at 3.3V and include a synchronous interface (all signals are registered on the positive edge of the clock signal, CLK). Each of the 67,108,864-bit banks is organized as 8,192 rows by 512 columns by 16 bits or 8,192 rows by 1,024 columns by 8 bits. Read and write accesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BA0 and BA1 select the bank, A0-A12 select the row). The address bits A0-A9 (x8); A0-A8 (x16) registered coincident with the READ or WRITE command are used to select the starting column location for the burst access. Prior to normal operation, the SDRAM must be initialized. The following sections provide detailed information covering device initialization, register definition, command descriptions and device operation. #### Initialization SDRAMs must be powered up and initialized in a predefined manner. The 256Mb SDRAM is initialized after the power is applied to VDD and VDDQ (simultaneously) and the clock is stable with CKE High. A 100µs delay is required prior to issuing any command other than a COMMAND INHIBIT or a NOP. The COMMAND INHIBIT or NOP may be applied during the 200us period and should continue at least through the end of the period. With at least one COMMAND INHIBIT or NOP command having been applied, a PRECHARGE command should be applied once the 100µs delay has been satisfied. All banks must be precharged. This will leave all banks in an idle state after which at least two AUTO REFRESH cycles must be performed. After the AUTO REFRESH cycles are complete, the SDRAM is then ready for mode register programming. The mode register should be loaded prior to applying any operational command because it will power up in an unknown state. #### INITIALIZE AND LOAD MODE REGISTER(1) #### Notes: - If CS is High at clock High time, all commands applied are NOP. The Mode register may be loaded prior to the Auto-Refresh cycles if desired. - 3. JEDEC and PC100 specify three clocks. - 4. Outputs are guaranteed High-Z after the command is issued. #### **AUTO-REFRESH CYCLE** Notes: 1. CAS latency = 2, 3 #### **SELF-REFRESH CYCLE** Notes: 1. Self-Refresh Mode is not supported for A2 grade with Ta > 85°C. #### REGISTER DEFINITION #### **Mode Register** The mode register is used to define the specific mode of operation of the SDRAM. This definition includes the selection of a burst length, a burst type, a CAS latency, an operating mode and a write burst mode, as shown in MODE REGISTER DEFINITION. The mode register is programmed via the LOAD MODE REGISTER command and will retain the stored information until it is programmed again or the device loses power. Mode register bits M0-M2 specify the burst length, M3 specifies the type of burst (sequential or interleaved), M4-M6 specify the CAS latency, M7 and M8 specify the operating mode, M9 specifies the WRITE burst mode, and M10, M11, and M12 are reserved for future use. The mode register must be loaded when all banks are idle, and the controller must wait the specified time before initiating the subsequent operation. Violating either of these requirements will result in unspecified operation. #### MODE REGISTER DEFINITION