

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

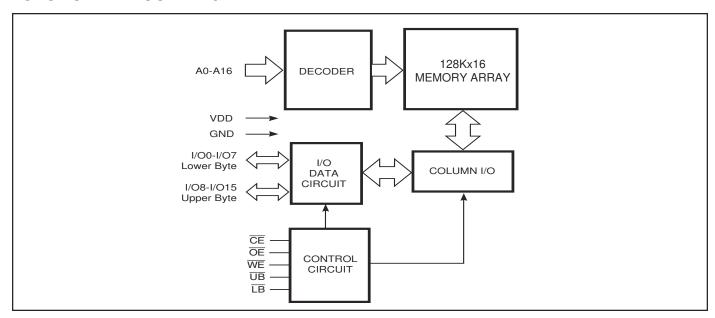
128K x 16 HIGH-SPEED CMOS STATIC RAM WITH 3.3V SUPPLY

OCTOBER 2005

FEATURES

- · High-speed access time: 8, 10 ns
- Operating Current: 50mA (typ.)
- Stand by Current: 700µA (typ.)
- TTL and CMOS compatible interface levels
- · Single 3.3V power supply
- Fully static operation: no clock or refresh required
- · Three state outputs
- · Data control for upper and lower bytes
- · Industrial temperature available
- Lead-free available

DESCRIPTION

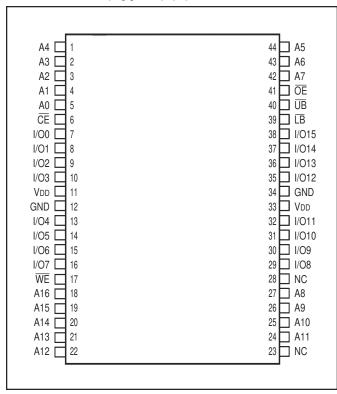

The *ISSI* IS61LV12816L is a high-speed, 2,097,152-bit static RAM organized as 131,072 words by 16 bits. It is fabricated using *ISSI*'s high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields access times as fast as 8 ns with low power consumption.

When \overline{CE} is HIGH (deselected), the device assumes a standby mode at which the power dissipation can be reduced down with CMOS input levels.

Easy memory expansion is provided by using Chip Enable and Output Enable inputs, $\overline{\textbf{CE}}$ and $\overline{\textbf{OE}}$. The active LOW Write Enable ($\overline{\textbf{WE}}$) controls both writing and reading of the memory. A data byte allows Upper Byte ($\overline{\textbf{UB}}$) and Lower Byte ($\overline{\textbf{LB}}$) access.

The IS61LV12816L is packaged in the JEDEC standard 44-pin TSOP (Type II), 44-pin LQFP, and 48-pin mini BGA (6mm x 8mm).

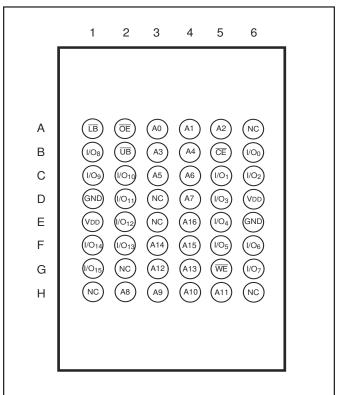
FUNCTIONAL BLOCK DIAGRAM


Copyright@2005 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

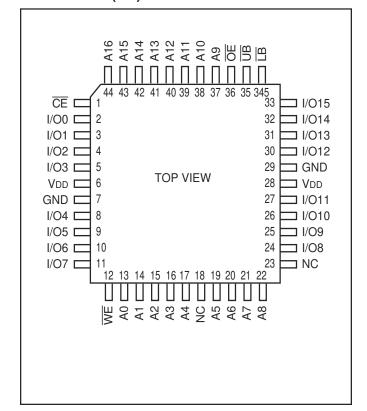
TRUTH TABLE

					I/O PIN				
Mode	WE	CE	ŌĒ	LB	UB	I/O0-I/O7	I/O8-I/O15	V _{DD} Current	
Not Selected	Х	Н	Χ	Х	Χ	High-Z	High-Z	ISB1, ISB2	
Output Disabled	Н	L	Н	Χ	Χ	High-Z	High-Z	Icc	
	Χ	L	Χ	Н	Н	High-Z	High-Z		
Read	Н	L	L	L	Н	D оит	High-Z	Icc	
	Н	L	L	Н	L	High-Z	Dout		
	Н	L	L	L	L	Dout	Dout		
Write	L	L	Χ	L	Н	Din	High-Z	Icc	
	L	L	Χ	Н	L	High-Z	DIN		
	L	L	Χ	L	L	Din	DIN		

PIN CONFIGURATION 44-Pin TSOP (Type II) (T)



PIN DESCRIPTIONS


A0-A16	Address Inputs
I/O0-I/O15	Data Inputs/Outputs
CE	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
LB	Lower-byte Control (I/O0-I/O7)
UB	Upper-byte Control (I/O8-I/O15)
NC	No Connection
V _{DD}	Power
GND	Ground

PIN CONFIGURATION 48-Pin mini BGA (B)

44-Pin LQFP (LQ)

PIN DESCRIPTIONS

A0-A16	Address Inputs
I/O0-I/O15	Data Inputs/Outputs
CE	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
LB	Lower-byte Control (I/O0-I/O7)
UB	Upper-byte Control (I/O8-I/O15)
NC	No Connection
VDD	Power
GND	Ground

IS61LV12816L

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit	
V _{DD}	Power Supply Voltage Relative to GND	-0.5 to 4.0V	V	
VTERM	Terminal Voltage with Respect to GND	-0.5 to V _{DD} + 0.5	V	
Тѕтс	Storage Temperature	-65 to + 150	°C	
Рт	Power Dissipation	1.0	W	

Note:

OPERATING RANGE

Range	Ambient Temperature	VDD (8 ns)	VDD (10 ns)	
Commercial	0°C to +70°C	3.3V + 10%, -5%	3.3V <u>+</u> 10%	
Industrial	–40°C to +85°C	3.3V + 10%, -5%	3.3V <u>+</u> 10%	

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	$V_{DD} = Min., I_{OH} = -4.0 \text{ mA}$	2.4	_	V
Vol	Output LOW Voltage	VDD = Min., IOL = 8.0 mA	_	0.4	V
VIH	Input HIGH Voltage ⁽¹⁾		2	VDD + 0.3	V
VIL	Input LOW Voltage ⁽¹⁾		-0.3	0.8	V
ILI	Input Leakage	GND ≤ VIN ≤ VDD	-1	1	μΑ
ILO	Output Leakage	GND ≤ Vouт ≤ Vdd, Outputs Disabled	-1	1	μΑ

^{1.} Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

^{1.} V_{IL} (min.) = -0.3V DC; V_{IL} (min.) = -2.0V AC (pulse width - 2.0 ns). Not 100% tested. V_{IH} (max.) = V_{DD} + 0.3V DC; V_{IH} (max.) = V_{DD} + 2.0V AC (pulse width - 2.0 ns). Not 100% tested.

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Symbol	Parameter	Test Conditions			ns Max.		ns Max.	Unit
lcc	VDD Operating Supply Current	$V_{DD} = Max., \overline{CE} = V_{IL}$ $I_{OUT} = 0 \text{ mA}, f = Max.$	Com. Ind. typ. ⁽²⁾	_ _ _	65 70 50	_ _ _	60 65 50	mA
ISB1	TTL Standby Current (TTL Inputs)	$\begin{aligned} & V_{\text{DD}} = \text{Max.}, \\ & \underline{V_{\text{IN}}} = V_{\text{IH}} \text{ or } V_{\text{IL}} \\ & \overline{\textbf{CE}} \geq V_{\text{IH}}, f = \text{max} \end{aligned}$	Com. Ind.	_	30 35	_	25 30	mA
ISB2	CMOS Standby Current (CMOS Inputs)	$\begin{split} & V_{DD} = Max., \\ & \overline{\textbf{CE}} \geq V_{DD} - 0.2V, \\ & V_{IN} \geq V_{DD} - 0.2V, \text{ or } \\ & V_{IN} \leq 0.2V, f = 0 \end{split}$	Com. Ind. typ. ⁽²⁾	_ _ _	3 4 700	_ _ _	3 4 700	mA mA μA

Note:

CAPACITANCE(1)

Symbol	Parameter	Conditions	Max.	Unit	
CIN	Input Capacitance	VIN = 0V	6	рF	
Соит	Input/Output Capacitance	Vout = 0V	8	рF	

^{1.} At f = fMAX, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change. 2. Typical values are measured at VDD=3.3V, TA=25°C. Not 100% tested.

^{1.} Tested initially and after any design or process changes that may affect these parameters.

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	3 ns
Input and Output Timing and Reference Level	1.5V
Output Load	See Figures 1 and 2

AC TEST LOADS

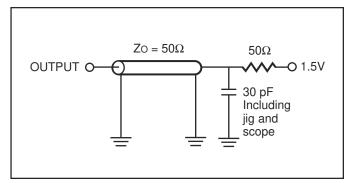


Figure 1.

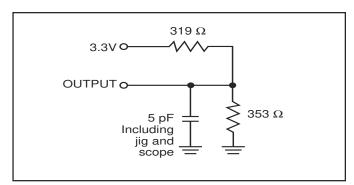
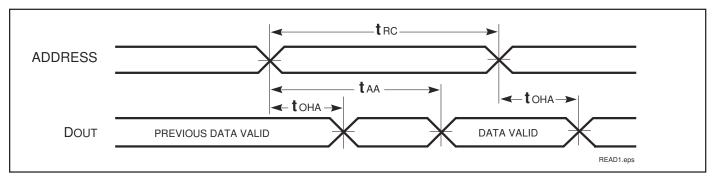
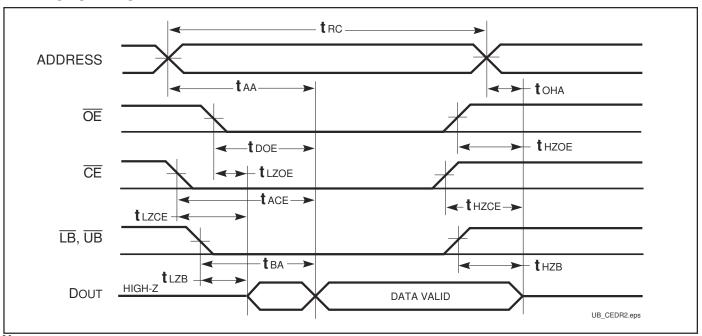


Figure 2.

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)


		-8	-8 ns -10 ns		ns	
Symbol	Parameter	Min.	Max	Min.	Max.	Unit
trc	Read Cycle Time	8	_	10	_	ns
taa	Address Access Time	_	8	_	10	ns
tона	Output Hold Time	3	_	3	_	ns
tace	CE Access Time	_	8	_	10	ns
tdoe	OE Access Time	_	3.5	_	4	ns
thzoe(2)	OE to High-Z Output	_	3.5	_	4	ns
tlzoe(2)	OE to Low-Z Output	0	_	0	_	ns
thzce(2)	CE to High-Z Output	0	3.5	0	4	ns
tLZCE ⁽²⁾	CE to Low-Z Output	3.5	_	3	_	ns
tва	LB, UB Access Time	_	3.5	_	4	ns
thzb(2)	LB, UB to High-Z Output	0	3.5	0	4	ns
tlzb ⁽²⁾	LB, UB to Low-Z Output	0	_	0	_	ns

- 1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0V to 3.0V and output loading specified in Figure 1.2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

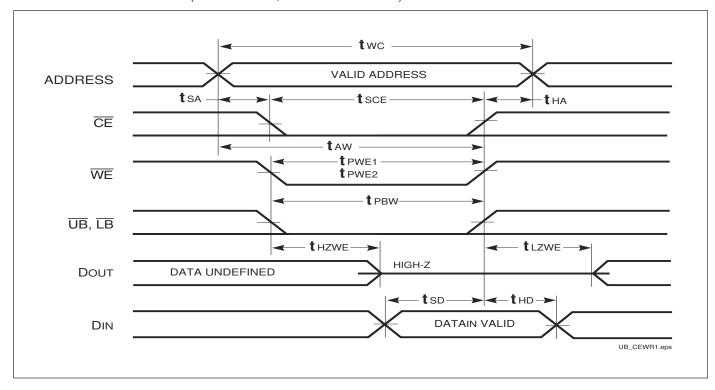


AC WAVEFORMS

READ CYCLE NO. $1^{(1,2)}$ (Address Controlled) ($\overline{CE} = \overline{OE} = V_{IL}, \overline{UB} \text{ or } \overline{LB} = V_{IL}$)

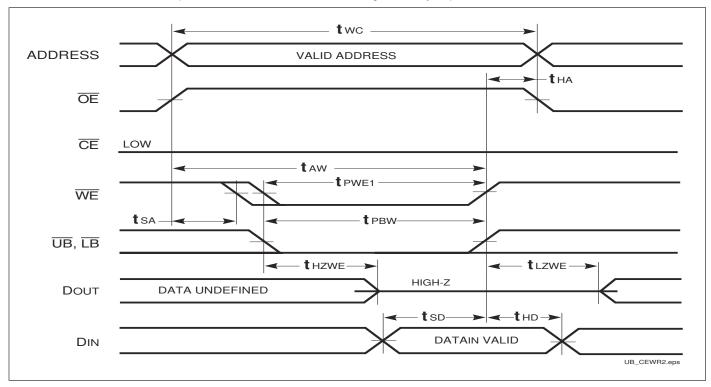
READ CYCLE NO. 2(1,3)

- 1. WE is HIGH for a Read Cycle.
- The device is continuously selected. OE, CE, UB, or LB = VIL.
 Address is valid prior to or coincident with CE LOW transition.

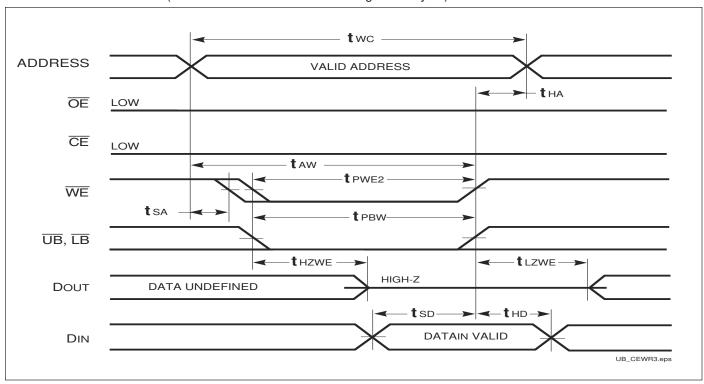

WRITE CYCLE SWITCHING CHARACTERISTICS(1,3) (Over Operating Range)

		-8) ns	
Symbol	Parameter	Min.	Max	Min.	Max.	Unit
twc	Write Cycle Time	8	_	10	_	ns
tsce	CE to Write End	7	_	8	_	ns
taw	Address Setup Time to Write End	7	_	8	_	ns
tha	Address Hold from Write End	0	_	0	_	ns
tsa	Address Setup Time	0	_	0	_	ns
t PBW	LB, UB Valid to End of Write	6.5	_	8	_	ns
tPWE1	WE Pulse Width (OE = HIGH)	6	_	7	_	ns
tPWE2	WE Pulse Width (OE = LOW)	6.5	_	8	_	ns
tsp	Data Setup to Write End	4	_	5	_	ns
tho	Data Hold from Write End	0	_	0	_	ns
thzwe ⁽³⁾	WE LOW to High-Z Output	_	3	_	4	ns
tLZWE ⁽³⁾	WE HIGH to Low-Z Output	0	_	0	_	ns

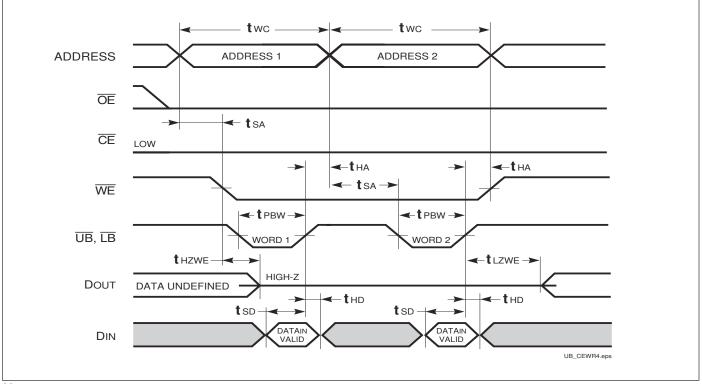
- 1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0V to 3.0V and output loading specified in Figure 1.
- 2. The internal write time is defined by the overlap of $\overline{\textbf{CE}}$ LOW and $\overline{\textbf{UB}}$ or $\overline{\textbf{LB}}$, and $\overline{\textbf{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.
- 3. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.



WRITE CYCLE NO. $1^{(1,2)}$ (\overline{CE} Controlled, \overline{OE} = HIGH or LOW)



WRITE CYCLE NO. $2^{(1)}$ (\overline{WE} Controlled, \overline{OE} = HIGH during Write Cycle)



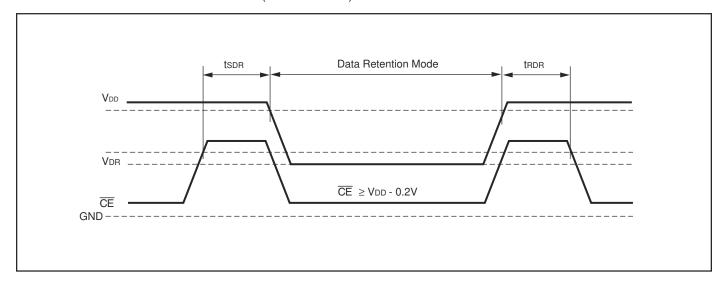
WRITE CYCLE NO. 3 (WE Controlled: OE is LOW During Write Cycle)

WRITE CYCLE NO. 4 (LB, UB Controlled, Back-to-Back Write) (1,3)

- 1. The internal Write time is defined by the overlap of $\overline{CE} = LOW$, \overline{UB} and/or $\overline{LB} = LOW$, and $\overline{WE} = LOW$. All signals must be in valid states to initiate a Write, but any can be deasserted to terminate the Write. The tsa, tha, tsd, and the timing is referenced to the rising or falling edge of the signal that terminates the Write.

 2. Tested with OE HIGH for a minimum of 4 ns before WE = LOW to place the I/O in a HIGH-Z state.

 3. WE may be held LOW across many address cycles and the LB, UB pins can be used to control the Write function.



DATA RETENTION SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Condition	Options	Min.	Typ. ⁽¹⁾	Max.	Unit
VDR	VDD for Data Retention	See Data Retention Waveform		2.0	_	3.6	V
IDR	Data Retention Current	$V_{DD} = 2.0V, \overline{CE} \ge V_{DD} - 0.2V$	Com.	_	0.7	3	mA
			Ind.	_	_	4	
tsdr	Data Retention Setup Time	See Data Retention Waveform		0	_	_	ns
trdr	Recovery Time	See Data Retention Waveform		trc	_	_	ns

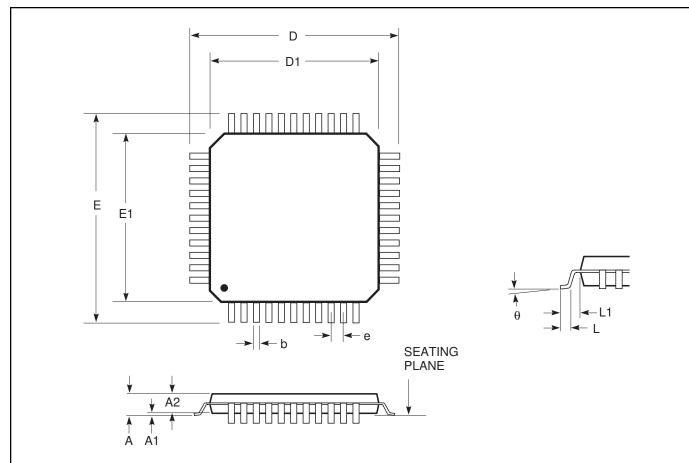
Note 1: Typical values are measured at VDD = 3.3V, TA = 25°C. Not 100% tested.

DATA RETENTION WAVEFORM (CE Controlled)

ORDERING INFORMATION:

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
8	IS61LV12816L-8T IS61LV12816L-8TL	Plastic TSOP (Type II) Plastic TSOP (Type II), Lead-free
10	IS61LV12816L-10T IS61LV12816L-10TL	Plastic TSOP (Type II) Plastic TSOP (Type II), Lead-free


Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
8	IS61LV12816L-8BI IS61LV12816L-8TI	mini BGA (6mm x 8mm) Plastic TSOP (Type II)
10	IS61LV12816L-10BI IS61LV12816L-10BLI IS61LV12816L-10LQI IS61LV12816L-10LQLI IS61LV12816L-10TI IS61LV12816L-10TLI	mini BGA (6mm x 8mm) mini BGA (6mm x 8mm), Lead-free LQFP LQFP, Lead-free Plastic TSOP (Type II) Plastic TSOP (Type II), Lead-free

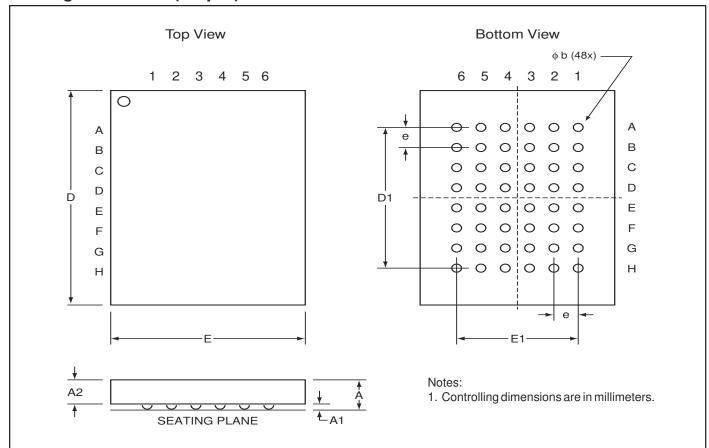
LQFP (Low Profile Quad Flat Pack)

Package Code: LQ (44-pin)

Low Profile Quad Flat Pack (LQ)										
Ref. Std.		MS-026								
No. Leads	44									
	Millin	neters	Incl	hes						
Symbol	Min	Max	Min	Max						
A	_	1.60	_	0.063						
A1	0.05	0.15	0.002	0.006						
A2	1.35	1.45	0.053	0.057						
b	0.30	0.45	0.012	0.018						
С	0.09	0.20	0.004	0.008						
D	12.00	BSC	0.472	BSC						
D1	10.00	BSC	0.394	BSC						
Е	12.00	BSC	0.472	BSC						
E1	10.00	BSC	0.394	BSC						
е	0.80	BSC	0.031	BSC						
L	0.45	0.75	0.018	0.030						
L1	1.00	REF.	0.039	REF.						
θ	0°	7°	0°	7∘						

Notes:

- All dimensioning and tolerancing conforms to ANSI Y14.5M-1982.
- Dimensions D1 and E1 do not include mold protrusions. Allowable protrusion is 0.25 mm per side. D1 and E1 include mold mismatch.
- 3. Controlling dimension: millimeters.


Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

PACKAGING INFORMATION

Mini Ball Grid Array

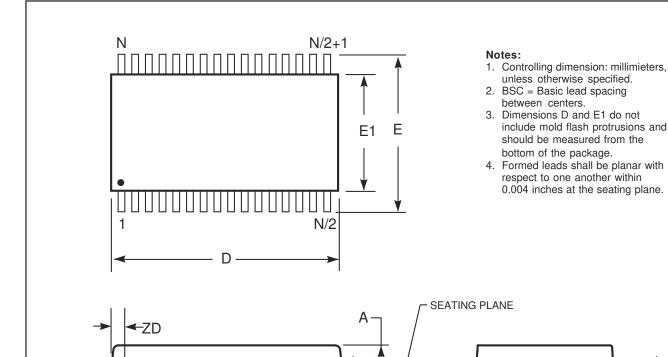
Package Code: B (48-pin)

mBGA - 6mm x 8mm

	MILI	IMET	ERS	INCHES				
Sym.	Min.	Тур.	Max.	Min.	Тур.	Max.		
N0. Leads		48						
A	_	_	1.20	_	_	0.047		
A1	0.24	_	0.30	0.009	_	0.012		
A2	0.60	_	_	0.024	_	_		
D	7.90	_	8.10	0.311	_	0.319		
D1	5.25 BSC			0.	207 B	SC		
E	5.90	_	6.10	0.232	_	0.240		
E1	3	.75 BS	iC	0.148 BSC				
е	0.75 BSC			0.030 BSC				
b	0.30	0.35	0.40	0.012	0.014	0.016		

mBGA - 8mm x 10mm

	MIL	LIME	ΓER	IN	3	
Sym.	Min.	Тур.	Max.	Min.	Тур.	Max.
N0. Leads		48				
Α	_	_	1.20	_	_	0.047
A1	0.24	_	0.30	0.009	_	0.012
A2	0.60	_	_	0.024	_	_
D	9.90	_	10.10	0.390	_	0.398
D1	5.25 BSC			0.2	SC	
E	7.90	_	8.10	0.311	_	0.319
E1	3	.75 BS	С	0.1	SC	
е	0.75 BSC			0.0	SC	
b	0.30	0.35	0.40	0.012	0.014	1 0.016


Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

PACKAGING INFORMATION

Plastic TSOP

Package Code: T (Type II)

	Plastic TSOP (T - Type II)											
	Millimeters Inches		Millim	Millimeters		Inches		Millimeters		Inches		
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Ref. Std.												
No. Leads	No. Leads (N) 32 44					50						
Α	_	1.20	_	0.047	_	1.20	_	0.047	_	1.20	_	0.047
A1	0.05	0.15	0.002	0.006	0.05	0.15	0.002	0.006	0.05	0.15	0.002	0.006
b	0.30	0.52	0.012	0.020	0.30	0.45	0.012	0.018	0.30	0.45	0.012	0.018
С	0.12	0.21	0.005	0.008	0.12	0.21	0.005	0.008	0.12	0.21	0.005	0.008
D	20.82	21.08	0.820	0.830	18.31	18.52	0.721	0.729	20.82	21.08	0.820	0.830
E1	10.03	10.29	0.391	0.400	10.03	10.29	0.395	0.405	10.03	10.29	0.395	0.405
Е	11.56	11.96	0.451	0.466	11.56	11.96	0.455	0.471	11.56	11.96	0.455	0.471
е	1.27	BSC	0.050	BSC	0.80	BSC	0.032	BSC	0.80	BSC	0.031	BSC
L	0.40	0.60	0.016	0.024	0.41	0.60	0.016	0.024	0.40	0.60	0.016	0.024
ZD	0.95	REF	0.037	7 REF	0.81	REF	0.03	2 REF	0.88	REF	0.035	REF
α	0°	5°	0°	5°	0°	5°	0°	5°	0°	5°	0°	5°

Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.