imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IS61LV25616AL

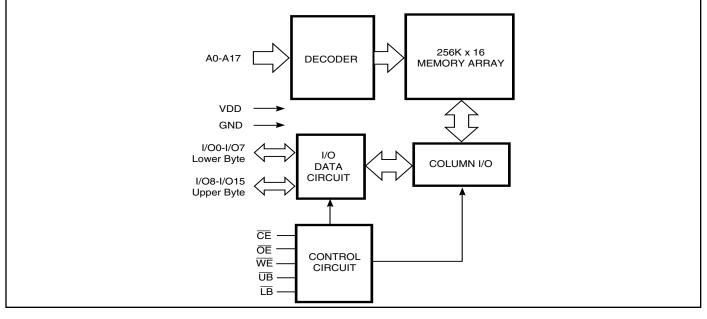
256K x 16 HIGH SPEED ASYNCHRONOUS CMOS STATIC RAM WITH 3.3V SUPPLY

DECEMBER 2011

FEATURES

- High-speed access time: — 10, 12 ns
- CMOS low power operation
- Low stand-by power:
 Less than 5 mA (typ.) CMOS stand-by
- TTL compatible interface levels
- Single 3.3V power supply
- Fully static operation: no clock or refresh required
- · Three state outputs
- · Data control for upper and lower bytes
- · Industrial temperature available
- Lead-free available

DESCRIPTION


The *ISSI* IS61LV25616AL is a high-speed, 4,194,304-bit static RAM organized as 262,144 words by 16 bits. It is fabricated using *ISSI*'s high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields high-performance and low power consumption devices.

When \overline{CE} is HIGH (deselected), the device assumes a standby mode at which the power dissipation can be reduced down with CMOS input levels.

Easy memory expansion is provided by using Chip Enable and Output Enable inputs, \overline{CE} and \overline{OE} . The active LOW Write Enable (\overline{WE}) controls both writing and reading of the memory. A data byte allows Upper Byte (\overline{UB}) and Lower Byte (\overline{LB}) access.

The IS61LV25616AL is packaged in the JEDEC standard 44-pin 400-mil SOJ, 44-pin TSOP Type II, 44-pin LQFP and 48-pin Mini BGA (8mm x 10mm).

FUNCTIONAL BLOCK DIAGRAM

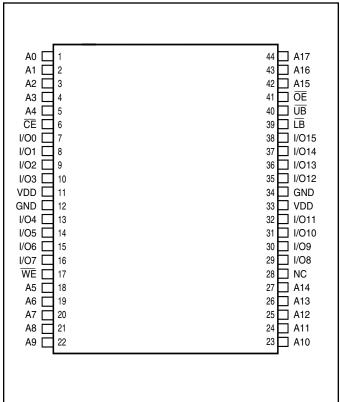
Copyright © 2011 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and

c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

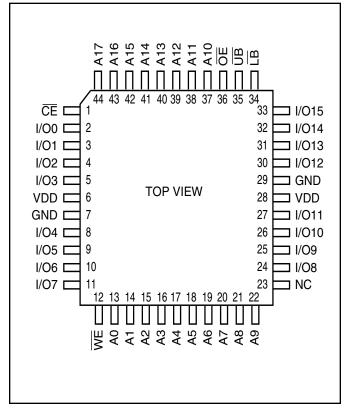

IS61LV25616AL

TRUTH TABLE

						I/O	PIN	
Mode	WE	CE	ŌĒ	LB	ŪΒ	I/00-I/07	I/O8-I/O15	VDD Current
Not Selected	Х	Н	Х	Х	Х	High-Z	High-Z	ISB1, ISB2
Output Disabled	H X	L L	H X	X H	X H	High-Z High-Z	High-Z High-Z	lcc
Read	H H H	L L L	L L L	L H L	H L L	Douт High-Z Douт	High-Z Douт Douт	lcc
Write	L L L	L L L	X X X	L H L	H L L	Dın High-Z Dın	High-Z Dın Dın	lcc

PIN CONFIGURATIONS

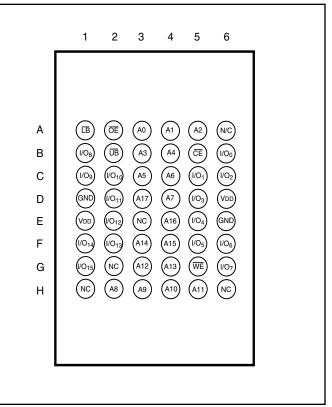
44-Pin TSOP (Type II) and SOJ



PIN DESCRIPTIONS

A0-A17	Address Inputs
I/O0-I/O15	Data Inputs/Outputs
CE	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
LB	Lower-byte Control (I/O0-I/O7)
UB	Upper-byte Control (I/O8-I/O15)
NC	No Connection
Vdd	Power
GND	Ground

PIN CONFIGURATIONS


44-Pin LQFP

PIN DESCRIPTIONS

A0-A17	Address Inputs
I/00-I/015	Data Inputs/Outputs
CE	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
LB	Lower-byte Control (I/O0-I/O7)
UB	Upper-byte Control (I/O8-I/O15)
NC	No Connection
Vdd	Power
GND	Ground

48-Pin mini BGA

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	–0.5 to VDD+0.5	V
Tstg	Storage Temperature	-65 to +150	°C
Ρτ	Power Dissipation	1.0	W

Note:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

		VDD		
Range	Ambient Temperature	10ns	12ns	
Commercial	0°C to +70°C	3.3V +10%, -5%	3.3V <u>+</u> 10%	
Industrial	–40°C to +85°C	3.3V +10%, -5%	3.3V <u>+</u> 10%	

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	$V_{DD} = Min., IOH = -4.0 mA$		2.4	—	V
Vol	Output LOW Voltage	$V_{DD} = Min., I_{OL} = 8.0 mA$		_	0.4	V
Vін	Input HIGH Voltage			2.0	Vdd + 0.3	V
VIL	Input LOW Voltage ⁽¹⁾			-0.3	0.8	V
Li	Input Leakage	$GND \leq V \text{IN} \leq V \text{DD}$	Com.	-2	2	μA
			Ind.	-5	5	
Ilo	Output Leakage	$GND \le VOUT \le VDD$	Com.	-2	2	μA
	_	Outputs Disabled	Ind.	-5	5	

Notes:

1. VIL (min.) = -2.0V for pulse width less than 10 ns.

Symbol	Parameter	Test Conditions		-	0 Max.	-12 Min.	-	Unit
lcc	VDD Dynamic Operating Supply Current	Vdd = Max., lout = 0 mA, f = fmax	Com. Ind.	_	100 110	_	90 100	mA
ISB	TTL Standby Current (TTL Inputs)	$\label{eq:VDD} \begin{array}{l} V \text{DD} = Max., \\ V \text{IN} = V \text{IH or } V \text{IL} \\ \overline{CE} \geq V \text{IH}, f = f \text{MAX}. \end{array}$	Com. Ind.		50 55	_	45 50	mA
ISB1	TTL Standby Current (TTL Inputs)	$\label{eq:VDD} \begin{split} V_{DD} &= Max.,\\ V_{IN} &= V_{IH} \text{ or } V_{IL}\\ \hline \overline{CE} &\geq V_{IH}, \ f = 0 \end{split}$	Com. Ind.		20 25	_	20 25	mA
ISB2	CMOS Standby Current (CMOS Inputs)	$eq:def_def_def_def_def_def_def_def_def_def_$	Com. Ind.		15 20	_	15 20	mA

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Note:

1. At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change. Shaded area product in development

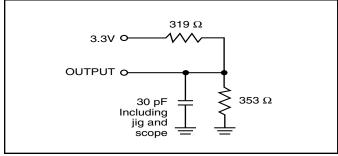
CAPACITANCE⁽¹⁾

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	$V_{IN} = 0V$	6	pF
Соит	Input/Output Capacitance	Vout = 0V	8	pF

Note:

1. Tested initially and after any design or process changes that may affect these parameters.

		-1(D	-12	2	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
trc	Read Cycle Time	10	_	12	—	ns
taa	Address Access Time	_	10		12	ns
tона	Output Hold Time	2	_	2	_	ns
t ACE	CE Access Time	_	10	_	12	ns
t DOE	OE Access Time	_	4	_	5	ns
thzoe ⁽²⁾	OE to High-Z Output	_	4	_	5	ns
tlzoe ⁽²⁾	OE to Low-Z Output	0	_	0	_	ns
tHZCE ⁽²	CE to High-Z Output	0	4	0	6	ns
tlzce ⁽²⁾	CE to Low-Z Output	3	_	3	_	ns
tва	LB, UB Access Time	_	4	_	5	ns
tHZB ⁽²⁾	LB, UB to High-Z Output	0	3	0	4	ns
tlzb ⁽²⁾	LB, UB to Low-Z Output	0	_	0	_	ns
tPU	Power Up Time	0		0	_	ns
t PD	Power Down Time	_	10		12	ns


READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Notes:

1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0V to 3.0V and output loading specified in Figure 1.

2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage.

AC TEST LOADS

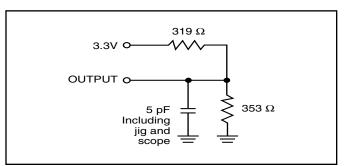
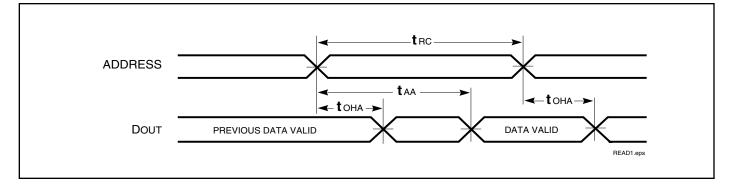
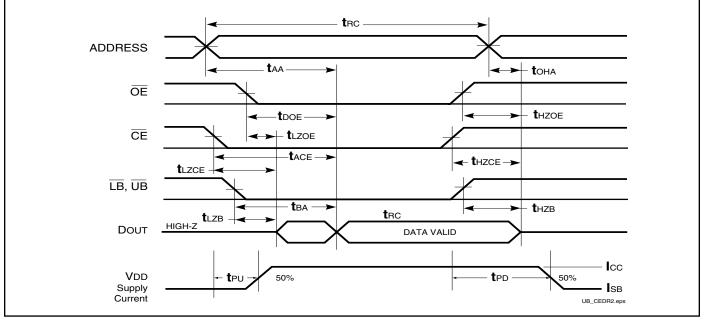


Figure 1


Figure 2

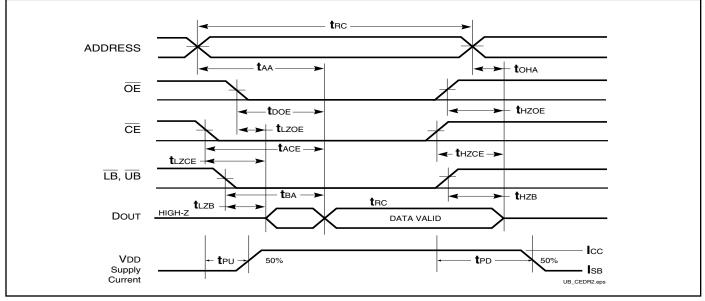
AC TEST CONDITIONS


Parameter	Unit	
Input Pulse Level	0V to 3.0V	
Input Rise and Fall Times	3 ns	
Input and Output Timing and Reference Level	1.5V	
Output Load	See Figures 1 and 2	

AC WAVEFORMS

READ CYCLE NO. 1^(1,2) (Address Controlled) ($\overline{CE} = \overline{OE} = V_{IL}$, \overline{UB} or $\overline{LB} = V_{IL}$)

READ CYCLE NO. 2^(1,3)



Notes:

- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , \overline{CE} , \overline{UB} , or $\overline{LB} = V_{IL}$. 3. Address is valid prior to or coincident with \overline{CE} LOW transition.

READ CYCLE NO. 2(1,3)

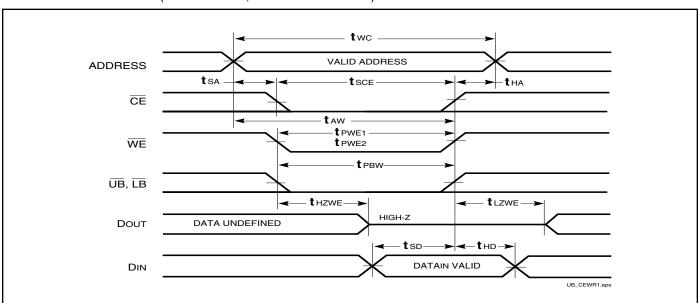
Notes:

1. WE is HIGH for a Read Cycle.

2. The device is continuously selected. \overline{OE} , \overline{CE} , \overline{UB} , or $\overline{LB} = V_{IL}$. 3. Address is valid prior to or coincident with \overline{CE} LOW transition.

WRITE CYCLE SWITCHING CHARACTERISTICS^(1,3) (Over Operating Range)

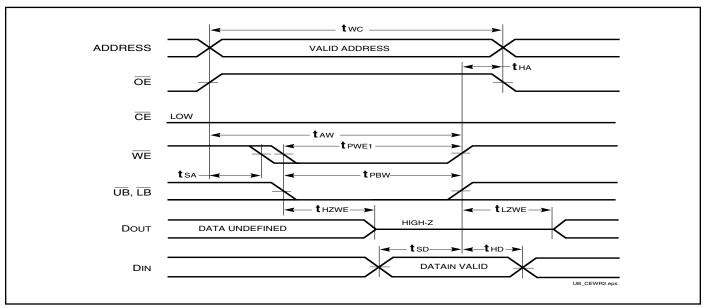
• • •	- .	1	-	-12	_	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
twc	Write Cycle Time	10	_	12	—	ns
tsce	CE to Write End	8	—	8	—	ns
taw	Address Setup Time to Write End	8	—	8	—	ns
tha	Address Hold from Write End	0	_	0	—	ns
tsa	Address Setup Time	0	—	0	_	ns
tрwв	LB, UB Valid to End of Write	8	_	8	_	ns
tpwe1	WE Pulse Width	8	_	8	_	ns
tpwe2	$\overline{\text{WE}}$ Pulse Width ($\overline{\text{OE}}$ = LOW)	10		12	_	ns
tsp	Data Setup to Write End	6	_	6	_	ns
tнD	Data Hold from Write End	0	_	0	_	ns
tHZWE ⁽²⁾	WE LOW to High-Z Output		5	_	6	ns
tlzwe ⁽²⁾	WE HIGH to Low-Z Output	2	_	2	_	ns


Notes:

1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0V to 3.0V and output loading specified in Figure 1.

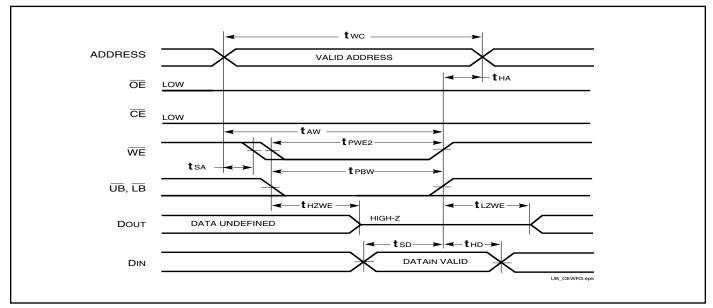
2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

3. The internal write time is defined by the overlap of CE LOW and UB or LB and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.

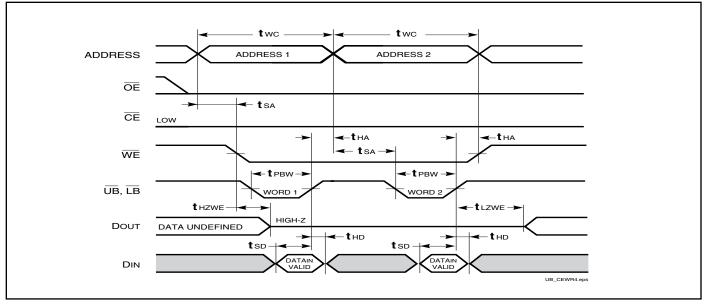

AC WAVEFORMS

WRITE CYCLE NO. 1 (CE Controlled, OE is HIGH or LOW) (1)

Notes:


- 1. WRITE is an internally generated signal asserted during an overlap of the LOW states on the $\overline{\text{CE}}$ and $\overline{\text{WE}}$ inputs and at least one of the $\overline{\text{LB}}$ and $\overline{\text{UB}}$ inputs being in the LOW state.
- 2. WRITE = $(\overline{CE}) [(\overline{LB}) = (\overline{UB})] (\overline{WE}).$

WRITE CYCLE NO. 2 (WE Controlled. OE is HIGH During Write Cycle) (1,2)

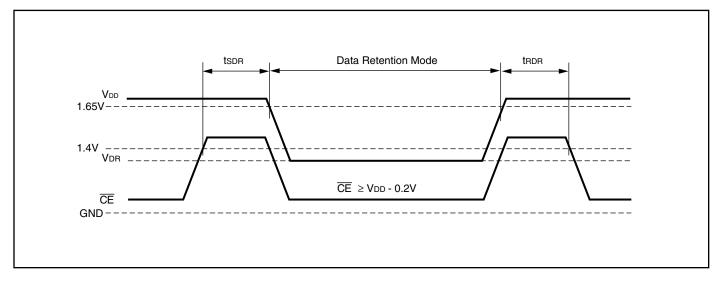


AC WAVEFORMS

WRITE CYCLE NO. 3 (WE Controlled. OE is LOW During Write Cycle) (1)

WRITE CYCLE NO. 4 (LB, UB Controlled, Back-to-Back Write) (1,3)

Notes:

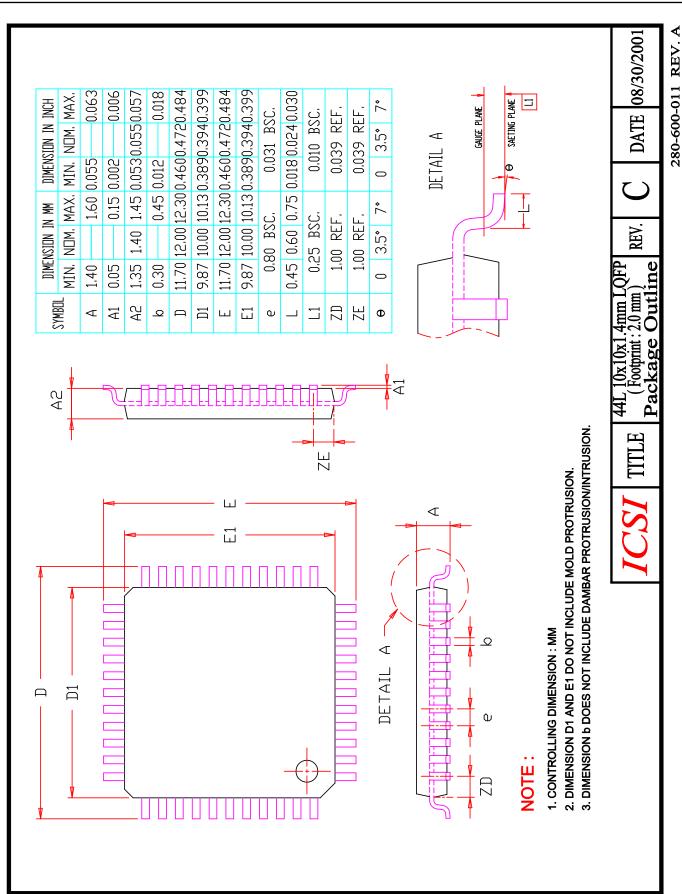

- 1. The internal Write time is defined by the overlap of $\overline{CE} = LOW$, \overline{UB} and/or $\overline{LB} = LOW$, and $\overline{WE} = LOW$. All signals must be in valid states to initiate a Write, but any can be deasserted to terminate the Write. The tsa, tHa, tsd, and tHd timing is referenced to the rising or falling edge of the signal that terminates the Write.
- Tested with OE HIGH for a minimum of 4 ns before WE = LOW to place the I/O in a HIGH-Z state.
 WE may be held LOW across many address cycles and the LB, UB pins can be used to control the Write function.

DATA RETENTION SWITCHING CHARACTERISTICS (LL)

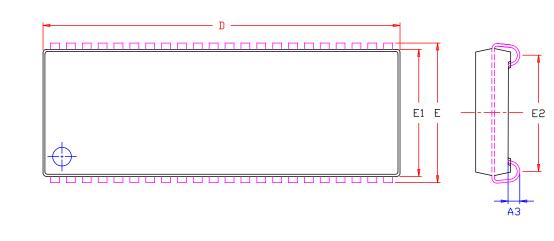
Symbol	Parameter	Test Condition	Options	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdr	VDD for Data Retention	See Data Retention Waveform		2.0	_	3.6	V
ldr	Data Retention Current	$V_{DD} = 2.0V, \overline{CE} \ge V_{DD} - 0.2V$	Com.	_	5	10	mA
			Ind.	—	—	15	
tsdr	Data Retention Setup Time	See Data Retention Waveform		0	_	_	ns
trdr	Recovery Time	See Data Retention Waveform		trc	—	_	ns

Note 1: Typical values are measured at VDD = 3.0V, TA = 25°C and not 100% tested.

DATA RETENTION WAVEFORM (CE Controlled)


ORDERING INFORMATION

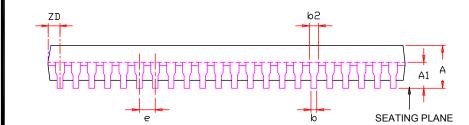
Commercial Range: 0°C to +70°C


Speed (ns)	Order Part No.	Package
10	IS61LV25616AL-10T	TSOP (Type II)
	IS61LV25616AL-10TL	TSOP (Type II), Lead-free
	IS61LV25616AL-10K	400-mil SOJ
12	IS61LV25616AL-12T	TSOP (Type II)

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package		
10	IS61LV25616AL-10TI	TSOP (Type II)		
	IS61LV25616AL-10TLI	TSOP (Type II), Lead-free		
	IS61LV25616AL-10KI	400-mil SOJ		
	IS61LV25616AL-10KLI	400-mil SOJ, Lead-free		
	IS61LV25616AL-10LQI	LQFP		
	IS61LV25616AL-10LQLI	LQFP, Lead-free		
	IS61LV25616AL-10BI	Mini BGA (8mm x 10mm)		
	IS61LV25616AL-10BLI	Mini BGA (8mm x 10mm), Lead-free		
12	IS61LV25616AL-12TI	TSOP (Type II)		

ISSI



SYMBOL	DIMENSION IN MM		DIMENSION IN INCH			
	MIN,	NDM.	MAX.	MIN.	NDM.	MAX.
Α	3.25		3.76	0.128		0.148
A1	2.08			0.082		
A3	0.635			0.025		
b	0.38		0.51	0.015		0.020
b2	0.66	0.71	0,81	0.026	0.028	0.032
D	28.45	28.58	28.70	1.120	1.125	1.130
E	11.05	11.18	11.30	0.435	0.440	0.445
E1	10.03	10.16	10.29	0.395	0.400	0.405
E2	9.40 BSC.		0.370 BSC.			
e	1.27 BSC.			0.050 BSC.		
ZD	0.95 REF.			0.037 REF.		

E

DATE 12/21/2007

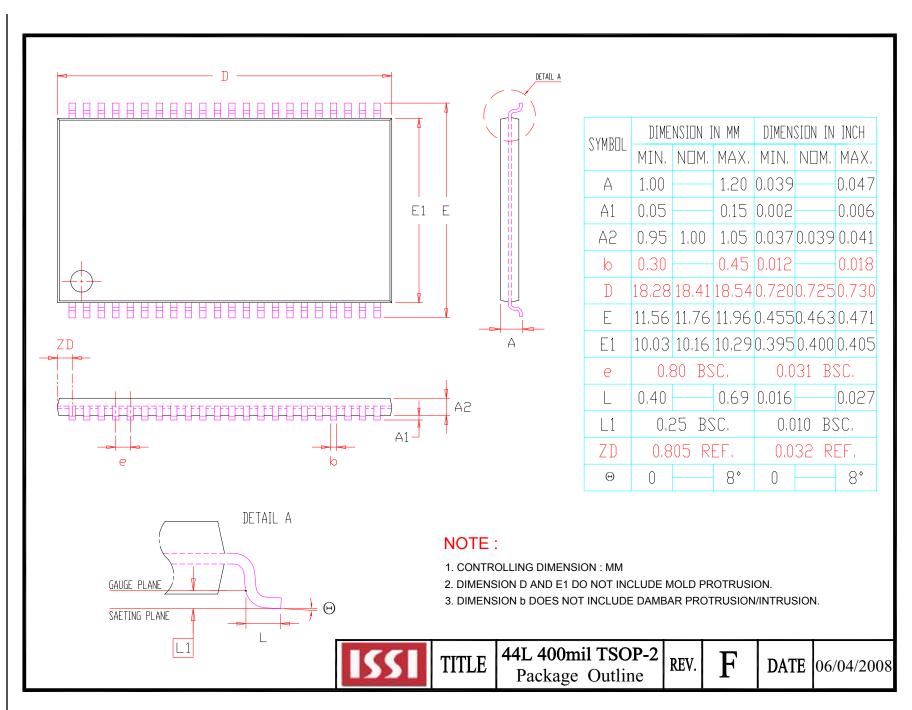
REV.

NOTE :

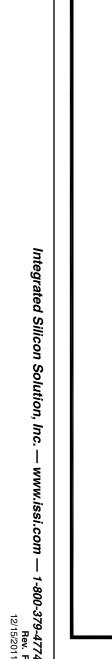
1. Controlling dimension : mm

2. Dimension D and E1 do not include mold protrusion .

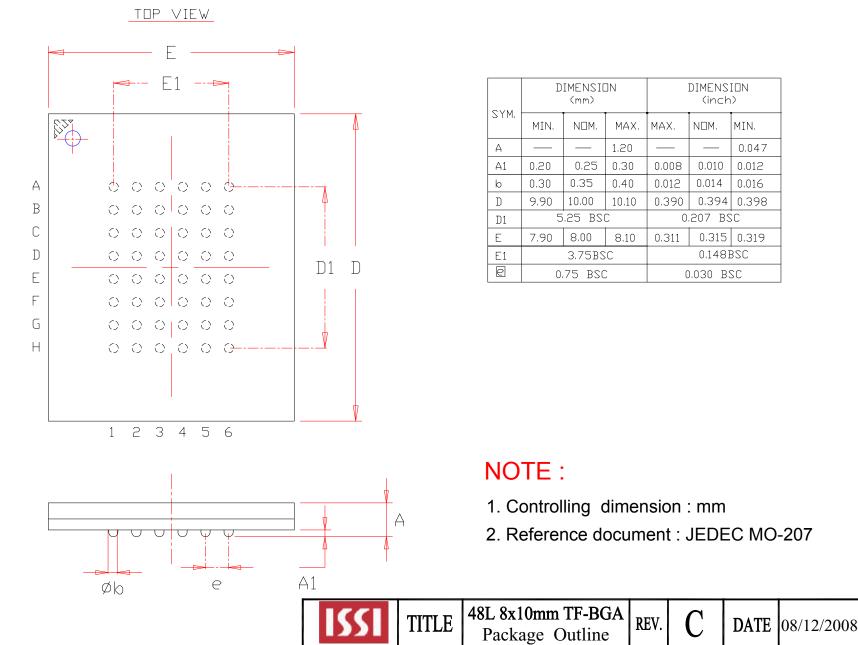
3. Dimension b2 does not include dambar protrusion/intrusion.


4. Formed leads shall be planar with respect to one another within 0.1mm at the seating plane after final test.

5. Reference document : JEDEC SPEC MS-027.



44L 400mil SOJ Package Outline



Integrated Silicon Solution, Inc. — www.issi.com — 1-800-379-4774 Rev. F 12/15/2011

16

