imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1M x 36 and 2M x 18 36Mb, PIPELINE 'NO WAIT' STATE BUS SRAM

FEATURES

- 100 percent bus utilization
- No wait cycles between Read and Write
- · Internal self-timed write cycle
- Individual Byte Write Control
- Single R/W (Read/Write) control pin
- Clock controlled, registered address, data and control
- Interleaved or linear burst sequence control using MODE input
- Three chip enables for simple depth expansion and address pipelining
- Power Down mode
- · Common data inputs and data outputs
- CKE pin to enable clock and suspend operation
- JEDEC 100-pin TQFP, 165-ball PBGA and 119ball PBGA packages
- Power supply: NLP: Vdd 3.3V (± 5%), Vdda 3.3V/2.5V (± 5%)
 NVP: Vdd 2.5V (± 5%), Vdda 2.5V (± 5%)
 NVVP: Vdd 1.8V (± 5%), Vdda 1.8V (± 5%)
- JTAG Boundary Scan for PBGA packages
- Industrial temperature available
- · Lead-free available

FAST ACCESS TIME

Symbol	Parameter	250	200	166	Units
tкq	Clock Access Time	2.8	3.1	3.8	ns
tкc	Cycle Time	4	5	6	ns
	Frequency	250	200	166	MHz

Copyright © 2014 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

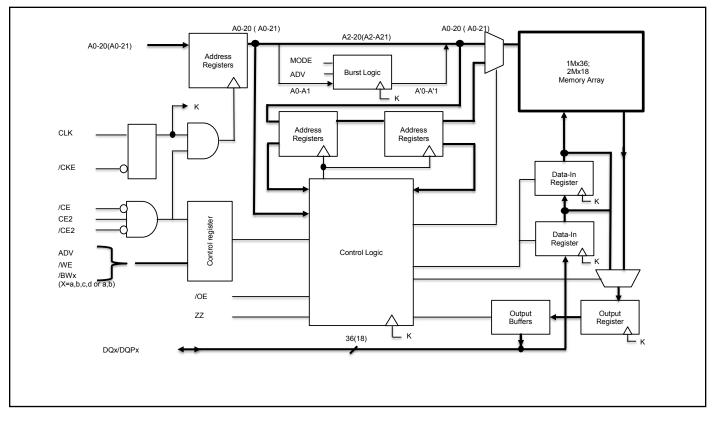
DESCRIPTION

The 36Meg product family features high-speed, low-power synchronous static RAMs designed to provide a burstable, high-performance, 'no wait' state, device for networking and communications applications. They are organized as 1,048,476 words by 36 bits and 2,096,952 words by 18 bits, fabricated with *ISSI*'s advanced CMOS technology.

MAY 2015

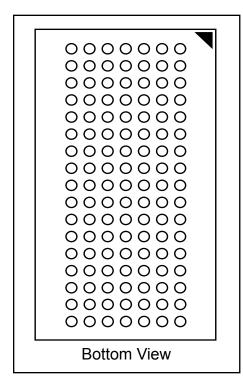
Incorporating a 'no wait' state feature, wait cycles are eliminated when the bus switches from read to write, or write to read. This device integrates a 2-bit burst counter, high-speed SRAM core, and high-drive capability outputs into a single monolithic circuit.

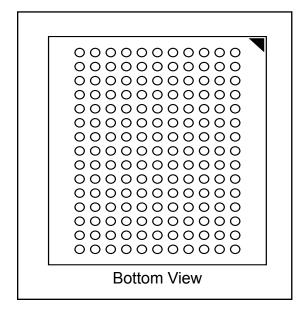
All synchronous inputs pass through registers are controlled by a positive-edge-triggered single clock input. Operations may be suspended and all synchronous inputs ignored when Clock Enable, CKE is HIGH. In this state the internal device will hold their previous values.


All Read, Write and Deselect cycles are initiated by the ADV input. When the ADV is HIGH the internal burst counter is incremented. New external addresses can be loaded when ADV is LOW.

Write cycles are internally self-timed and are initiated by the rising edge of the clock inputs and when $\overline{\text{WE}}$ is LOW. Separate byte enables allow individual bytes to be written.

A burst mode pin (MODE) defines the order of the burst sequence. When tied HIGH, the interleaved burst sequence is selected. When tied LOW, the linear burst sequence is selected.


BLOCK DIAGRAM


119-PIN BGA

119-Ball, 14x22 mm BGA

165-PIN BGA

165-Ball, 13x15 mm BGA

				,	-		,				
	1	2	3	4	5	6	7	8	9	10	11
Α	NC	А	ĈĒ	BWc	BWb	CE2	CKE	ADV	А	А	NC
В	NC	А	CE2	BWd	BWa	CLK	WE	ŌĒ	А	А	NC
С	DQPc	NC	Vddq	Vss	Vss	Vss	Vss	Vss	Vddq	NC	DQPb
D	DQc	DQc	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQb	DQb
E	DQc	DQc	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQb	DQb
F	DQc	DQc	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQb	DQb
G	DQc	DQc	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQb	DQb
Н	NC	NC	NC	Vdd	Vss	Vss	Vss	Vdd	NC	NC	ZZ
J	DQd	DQd	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQa	DQa
K	DQd	DQd	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQa	DQa
L	DQd	DQd	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQa	DQa
М	DQd	DQd	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQa	DQa
N	DQPd	NC	Vddq	Vss	NC	NC	NC	Vss	Vddq	NC	DQPa
Р	NC	NC	А	А	TDI	A1*	TDO	A	А	А	NC
R	MODE	А	А	А	TMS	A0*	TCK	A	А	А	А

PIN CONFIGURATION — 1M x 36, 165-Ball PBGA (TOP VIEW)

Note: A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.

Symbol	Pin Name
А	Synchronous Address Inputs
A0, A1	Synchronous Burst Address Inputs
ADV	Synchronous Burst Address Advance/ Load
WE	Synchronous Read/Write Control Input
CLK	Synchronous Clock
CKE	Synchronous Clock Enable
$\overline{CE}, \overline{CE2}, CE2$	Synchronous Chip Enable
BWa-BWd	Synchronous Byte Write Inputs
ŌĒ	Asynchronous Output Enable
ZZ	Asynchronous Power Sleep Mode

MODE	Burst Sequence Selection
TCK, TDI	JTAG Pins
TDO, TMS	
Vdd	Power Supply
NC	No Connect
DQa-DQd	Synchronous Data Inputs/Outputs
DQPa-DQPd	Synchronous Parity Data
	Inputs/Outputs
Vddq	I/O Power Supply
Vss	Ground

119-PIN PBGA PACKAGE CONFIGURATION —1M x 36 (TOP VIEW)

	1	2	3	4	5	6	7
А	Vddq	А	А	А	А	А	Vddq
В	NC	CE2	А	ADV	А	CE2	NC
С	NC	А	А	Vdd	А	А	NC
D	DQc	DQPc	Vss	NC	Vss	DQPb	DQb
Е	DQc	DQc	Vss	CE	Vss	DQb	DQb
F	Vddq	DQc	Vss	ŌĒ	Vss	DQb	Vddq
G	DQc	DQc	BWc	А	BWb	DQb	DQb
н	DQc	DQc	Vss	WE	Vss	DQb	DQb
J	Vddq	Vdd	NC	Vdd	NC	Vdd	Vddq
К	DQd	DQd	Vss	CLK	Vss	DQa	DQa
L	DQd	DQd	BWd	NC	BWa	DQa	DQa
М	Vddq	DQd	Vss	CKE	Vss	DQa	Vddq
Ν	DQd	DQd	Vss	A1*	Vss	DQa	DQa
Р	DQd	DQPd	Vss	A0*	Vss	DQPa	DQa
R	NC	А	MODE	Vdd	NC	А	NC
Т	NC	NC	А	А	А	А	ZZ
U	Vddq	TMS	TDI	ТСК	TDO	NC	Vddq

Note: A0 and A1 are the two least significant bits(LSB) of the address field and set the internal burst counter if burst is desired.

Symbol	Pin Name
А	Synchronous Address Inputs
A0, A1	Synchronous Burst Address Inputs
ADV	Synchronous Burst Address Advance/ Load
WE	Synchronous Read/Write Control Input
CLK	Synchronous Clock
CKE	Synchronous Clock Enable
CE	Synchronous Chip Select
CE2	Synchronous Chip Select
CE2	Synchronous Chip Select
BWa-BWd	Synchronous Byte Write Inputs

ŌĒ	Asynchronous Output Enable
ZZ	Asynchronous Power Sleep Mode
MODE	Burst Sequence Selection
TCK, TDO	JTAG Pins
TMS, TDI	
Vdd	Power Supply
Vss	Ground
NC	No Connect
DQa-DQd	Synchronous Data Inputs/Outputs
DQPa-DQPd	Synchronous Parity Data
	Inputs/Outputs
Vddq	I/O Power Supply

165-PIN PBGA PACKAGE CONFIGURATION — 2M x 18 (TOP VIEW)

	1	2	3	4	5	6	7	8	9	10	11
А	NC	А	CE	BWb	NC	CE2	CKE	ADV	А	А	А
В	NC	А	CE2	NC	₩a	CLK	WE	ŌĒ	А	А	NC
С	NC	NC	Vddq	Vss	Vss	Vss	Vss	Vss	Vddq	NC	DQPa
D	NC	DQb	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	NC	DQa
Е	NC	DQb	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	NC	DQa
F	NC	DQb	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	NC	DQa
G	NC	DQb	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	NC	DQa
Н	NC	NC	NC	Vdd	Vss	Vss	Vss	Vdd	NC	NC	ZZ
J	DQb	NC	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQa	NC
Κ	DQb	NC	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQa	NC
L	DQb	NC	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQa	NC
М	DQb	NC	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQa	NC
Ν	DQPb	NC	Vddq	Vss	NC	NC	NC	Vss	Vddq	NC	NC
Ρ	NC	NC	А	А	TDI	A1*	TDO	А	А	А	NC
R	MODE	А	А	А	TMS	A0*	TCK	А	А	А	А

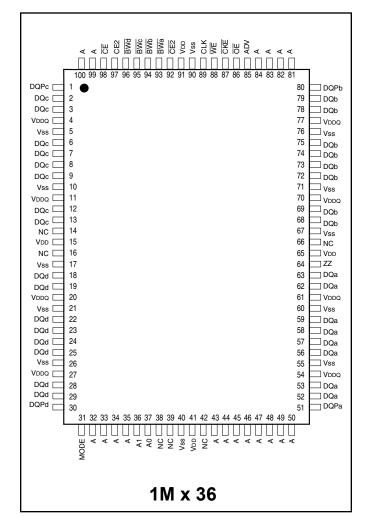
Note: A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.

Symbol	Pin Name
А	Synchronous Address Inputs
A0, A1	Synchronous Burst Address Inputs
ADV	Synchronous Burst Address Advance/ Load
WE	Synchronous Read/Write Control Input
CLK	Synchronous Clock
CKE	Synchronous Clock Enable
CE, CE2, CE2	Synchronous Chip Enable
BWa-BWb	Synchronous Byte Write Inputs
ŌĒ	Asynchronous Output Enable
ZZ	Asynchronous Power Sleep Mode

MODE	Burst Sequence Selection
TCK, TDI TDO, TMS	JTAG Pins
Vdd	Power Supply
NC	No Connect
DQa-DQb	Synchronous Data Inputs/Outputs
DQPa-DQPb	Synchronous Parity Data
	Inputs/Outputs
Vddq	I/O Power Supply
Vss	Ground

119-PIN PBGA PACKAGE CONFIGURATION —2M x 18 (TOP VIEW)

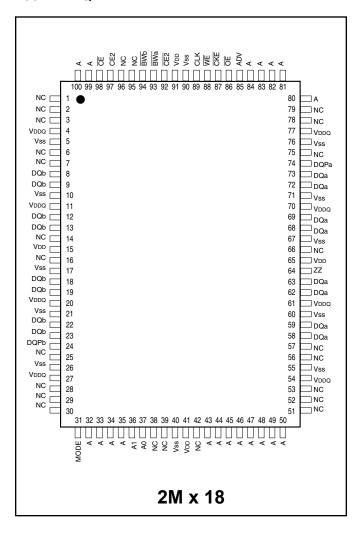
	1	2	3	4	5	6	7
А	Vddq	А	А	А	А	А	Vddq
В	NC	CE2	А	ADV	А	CE2	NC
С	NC	А	А	Vdd	А	А	NC
D	DQb	NC	Vss	NC	Vss	DQPa	NC
Е	NC	DQb	Vss	CE	Vss	NC	DQa
F	Vddq	NC	Vss	ŌĒ	Vss	DQa	Vddq
G	NC	DQb	BWb	А	NC	NC	DQa
Н	DQb	NC	Vss	WE	Vss	DQa	NC
J	Vddq	Vdd	NC	Vdd	NC	Vdd	Vddq
К	NC	DQb	Vss	CLK	Vss	NC	DQa
L	DQb	NC	NC	NC	BWa	DQa	NC
М	Vddq	DQb	Vss	CKE	Vss	NC	Vddq
Ν	DQb	NC	Vss	A1*	Vss	DQa	NC
Р	NC	DQPb	Vss	A0*	Vss	NC	DQa
R	NC	А	MODE	Vdd	NC	А	NC
Т	NC	А	А	А	А	А	ZZ
U	Vddq	TMS	TDI	ТСК	TDO	NC	Vddq


Note: A0 and A1 are the two least significant bits(LSB) of the address field and set the internal burst counter if burst is desired.

Symbol	Pin Name
Symbol	
A	Synchronous Address Inputs
A0, A1	Synchronous Burst Address Inputs
ADV	Synchronous Burst Address Advance/ Load
WE	Synchronous Read/Write Control Input
CLK	Synchronous Clock
CKE	Synchronous Clock Enable
CE	Synchronous Chip Select
CE2	Synchronous Chip Select
CE2	Synchronous Chip Select
BWa-BWb	Synchronous Byte Write Inputs

ŌĒ	Asynchronous Output Enable
ZZ	Asynchronous Power Sleep
	Mode
MODE	Burst Sequence Selection
TCK, TDO	JTAG Pins
TMS, TDI	
Vdd	Power Supply
Vss	Ground
NC	No Connect
DQa-DQb	Synchronous Data Inputs/Outputs
DQPa-DQPb	Synchronous Parity Data
	Inputs/Outputs
Vddq	I/O Power Supply

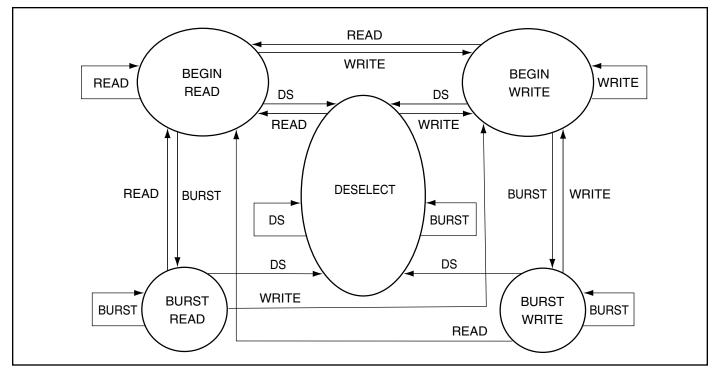
PIN CONFIGURATION 100-Pin TQFP



A0, A1	Synchronous Address Inputs. These pins must tied to the two LSBs of the address bus.
А	Synchronous Address Inputs
CLK	Synchronous Clock
ADV	Synchronous Burst Address Advance
BWa-BWd	Synchronous Byte Write Enable
WE	Synchronous Write Enable
CKE	Synchronous Clock Enable
Vss	Ground for Core
NC	Not Connected

\overline{CE} , CE2, $\overline{CE2}$	Synchronous Chip Enable
ŌĒ	Asynchronous Output Enable
DQa-DQd	Synchronous Data Inputs/Outputs
DQPa-DQPd	Synchronous Parity Data Inputs/Outputs
MODE	Burst Sequence Selection
Vdd	Power Supply
Vss	Ground for output Buffer
Vddq	I/O Power Supply
ZZ	Asynchronous Snooze Enable

PIN CONFIGURATION 100-Pin TQFP



A0, A1	Synchronous Address Inputs. These pins must tied to the two LSBs of the address bus.
A	Synchronous Address Inputs
CLK	Synchronous Clock
ADV	Synchronous Burst Address Advance
BWa-BWb	Synchronous Byte Write Enable
WE	Synchronous Write Enable
CKE	Synchronous Clock Enable
Vss	Ground for Core
NC	Not Connected

\overline{CE} , CE2, $\overline{CE2}$	Synchronous Chip Enable
ŌĒ	Asynchronous Output Enable
DQa-DQb	Synchronous Data Inputs/Outputs
DQPa-DQPb	Synchronous Parity Data Inputs/Outputs
MODE	Burst Sequence Selection
Vdd	Power Supply
Vss	Ground for output Buffer
Vddq	I/O Power Supply
ZZ	Asynchronous Snooze Enable

STATE DIAGRAM

SYNCHRONOUS TRUTH TABLE⁽¹⁾

Operation	Address Used	CE	CE2	CE2	ADV	WE	BWx	ŌĒ	CKE	CLK
Not Selected	N/A	Н	Х	Х	L	Х	Х	Х	L	\uparrow
Not Selected	N/A	Х	L	Х	L	Х	Х	Х	L	\uparrow
Not Selected	N/A	Х	Х	Н	L	Х	Х	Х	L	\uparrow
Not Selected Continue	N/A	Х	Х	Х	Н	Х	Х	Х	L	\uparrow
Begin Burst Read	External Address	L	Н	L	L	Н	Х	L	L	\uparrow
Continue Burst Read	Next Address	Х	Х	Х	Н	Х	Х	L	L	\uparrow
NOP/Dummy Read	External Address	L	Н	L	L	Н	Х	Н	L	\uparrow
Dummy Read	Next Address	Х	Х	Х	Н	Х	Х	Н	L	\uparrow
Begin Burst Write	External Address	L	Н	L	L	L	L	Х	L	\uparrow
Continue Burst Write	Next Address	Х	Х	Х	Н	Х	L	Х	L	\uparrow
NOP/Write Abort	N/A	L	Н	L	L	L	Н	Х	L	\uparrow
Write Abort	Next Address	Х	Х	Х	Н	Х	Н	Х	L	\uparrow
Ignore Clock	Current Address	Х	Х	Х	Х	Х	Х	Х	Н	\uparrow

Notes:

1. "X" means don't care.

2. The rising edge of clock is symbolized by \uparrow

3. A continue deselect cycle can only be entered if a deselect cycle is executed first.

4. $\overline{\text{WE}}$ = L means Write operation in Write Truth Table.

 \overline{WE} = H means Read operation in Write Truth Table.

5. Operation finally depends on status of asynchronous pins (ZZ and \overline{OE}).

ASYNCHRONOUS TRUTH TABLE⁽¹⁾

Operation	ZZ	ŌE	I/O STATUS	
Sleep Mode	Н	Х	High-Z	
Read	L	L	DQ	
	L	Н	High-Z	
Write	L	Х	Din, High-Z	
Deselected	L	Х	High-Z	

Notes:

1. X means "Don't Care".

2. For write cycles following read cycles, the output buffers must be disabled with \overline{OE} , otherwise data bus contention will occur.

3. Sleep Mode means power Sleep Mode where stand-by current does not depend on cycle time.

4. Deselected means power Sleep Mode where stand-by current depends on cycle time.

Operation	WE	BWa	BWb	
READ	Н	Х	Х	
WRITE BYTE a	L	L	Н	
WRITE BYTE b	L	Н	L	
WRITE ALL BYTEs	L	L	L	
WRITE ABORT/NOP	L	Н	Н	

WRITE TRUTH TABLE (x18)

Notes:

1. X means "Don't Care".

2. All inputs in this table must beet setup and hold time around the rising edge of CLK.

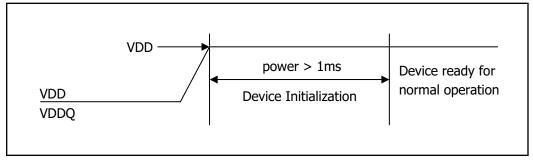
WRITE TRUTH TABLE (x36)

Operation	WE	BWa	BWb	BWc	BWd	
READ	Н	Х	Х	Х	Х	
WRITE BYTE a	L	L	Н	Н	Н	
WRITE BYTE b	L	Н	L	Н	Н	
WRITE BYTE c	L	Н	Н	L	Н	
WRITE BYTE d	L	Н	Н	Н	L	
WRITE ALL BYTEs	L	L	L	L	L	
WRITE ABORT/NOP	L	Н	Н	Н	Н	

Notes:

1. X means "Don't Care".

2. All inputs in this table must beet setup and hold time around the rising edge of CLK.

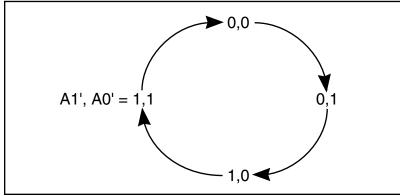

POWER UP SEQUENCE

 $V \text{DDQ} \rightarrow V \text{DD}^1 \rightarrow \text{ I/O Pins}^2$

Notes:

- 1. VDD can be applied at the same time as VDDQ
- 2. Applying I/O inputs is recommended after VDDQ is ready. The inputs of the I/O pins can be applied at the same time as VDDQ provided VIH (level of I/O pins) is lower than VDDQ.

POWER-UP INITIALIZATION TIMING



INTERLEAVED BURST ADDRESS TABLE (MODE = VDD or NC)

External Address A1 A0	1st Burst Address A1 A0	2nd Burst Address A1 A0	3rd Burst Address A1 A0
00	01	10	11
01	00	11	10
10	11	00	01
11	10	01	00

LINEAR BURST ADDRESS TABLE (MODE = Vss)

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Parameter	NLP Value	NVP/NVVP Value	Unit
Tstg	Storage Temperature	-65 to +150	–65 to +150	°C
Pd	Power Dissipation	1.6	1.6	W
Ιουτ	Output Current (per I/O)	100	100	mA
VIN, VOUT	Voltage Relative to Vss for I/O Pins	-0.5 to VDDQ + 0.3	-0.5 to VDDQ + 0.3	V
Vin	Voltage Relative to Vss for for Address and Control Inputs	-0.3 to Vpp+0.5	-0.3 to VDD+0.3	V

Notes:

 Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, precautions may be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

3. This device contains circuitry that will ensure the output devices are in High-Z at power up.

OPERATING RANGE (IS61/64NLPx)

Range	Ambient Temperature	Vdd	VDDQ
Commercial	0°C to +70°C	3.3V ± 5%	3.3V / 2.5V ± 5%
Industrial	-40°C to +85°C	3.3V ± 5%	3.3V / 2.5V ± 5%
Automotive	-40°C to +125°C	3.3V ± 5%	3.3V / 2.5V ± 5%

OPERATING RANGE (IS61/64NVPx)

Range	Ambient Temperature	VDD	Vddq
Commercial	0°C to +70°C	2.5V ± 5%	2.5V ± 5%
Industrial	-40°C to +85°C	2.5V ± 5%	2.5V ± 5%
Automotive	-40°C to +125°C	2.5V ± 5%	2.5V ± 5%

OPERATING RANGE (IS61/64NVVPx)

Range	Ambient Temperature	VDD	VDDQ
Commercial	0°C to +70°C	1.8V ± 5%	1.8V ± 5%
Industrial	-40°C to +85°C	1.8V ± 5%	1.8V ± 5%
Automotive	-40°C to +125°C	1.8V ± 5%	1.8V ± 5%

DC ELECTRICAL CHARACTERISTICS (Over Operating Range) 1, 2, 3

			3	.3V	2.	5V	1.8	V	
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Vон	Output HIGH Voltage	Іон = –4.0 mA (3.3V) Іон = –1.0 mA (2.5V, 1.8V)	2.4	_	2.0	—	Vddq - 0.4	—	V
Vol	Output LOW Voltage	lo∟ = 8.0 mA (3.3V) lo∟ = 1.0 mA (2.5V, 1.8V)	_	0.4	—	0.4	_	0.4	V
VIH	Input HIGH Voltage		2.0	VDD + 0.3	1.7	VDD + 0.3	0.6Vdd	VDD + 0.3	V
VIL	Input LOW Voltage		-0.3	0.8	-0.3	0.7	-0.3	0.3Vdd	V
lu	Input Leakage Current Input Current of MODE Input Current of ZZ	$\begin{array}{l} Vss \leq V \text{IN} \leq V \text{DD}^{(1,4)} \\ Vss \leq V \text{IN} \leq V \text{DD}^{(5)} \\ Vss \leq V \text{IN} \leq V \text{DD}^{(6)} \end{array}$	-5 -30 -5	5 5 30	-5 -30 -5	5 5 30	-5 -30 -5	5 5 30	μA
llo	Output Leakage Current	$V_{SS} \le V_{OUT} \le V_{DDQ}, \ \overline{OE} = V_{IH}$	-5	5	-5	5	-5	5	μA

Notes:

1. All voltages referenced to ground.

2. Overshoot:

3.3V and 2.5V: VIH (AC) \leq VDD + 1.5V (Pulse width less than trc /2)

1.8V: VIH (AC) \leq VDD + 0.5V (Pulse width less than tkc /2)

3. Undershoot:

3.3V and 2.5V: VIL (AC) \geq -1.5V (Pulse width less than trc /2)

1.8V: VIL (AC) \geq -0.5V (Pulse width less than tkc /2)

4. Except MODE and ZZ

5. MODE is connected to pull-up resister internally.

6. ZZ is connected to pull-down resister internally.

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

					50 AX		200 AX		66 4X	
Symbol	Parameter	Test Conditions	Temp. range	x18	x36	x18	x36	x18	x36	Unit
lcc	AC Operating	Device Selected,	Com.	400	400	350	350	320	320	mA
	Supply Current	\overline{OE} = VIH, ZZ \leq VIL,	Ind.	450	450	400	400	350	350	
		$\begin{array}{l} \mbox{All Inputs} \leq \ 0.2V \mbox{ or } \geq V_{DD} - 0.\\ \mbox{Cycle Time} \geq t_{KC} \mbox{ min.} \end{array}$	2V,Auto.	-	-	500	500	450	450	
ISB	Standby Current	Device Deselected,	Com.	200	200	200	200	200	200	mA
	TTL Input	VDD = Max.,	Ind.	220	220	220	220	220	220	
		$\begin{array}{l} \text{All Inputs} \leq V_{IL} \text{ or } \geq V_{IH}, \\ \text{ZZ} \leq V_{IL}, \text{ f = Max}. \end{array}$	Auto.	-	-	300	300	300	300	
ISBI	Standby Current	Device Deselected,	Com.	180	180	180	180	180	180	mA
	CMOS Input	VDD = Max.,	Ind.	200	200	200	200	200	200	
		$V_{IN} \leq V_{SS} + 0.2V \text{ or } \geq V_{DD} - 0.2$ f = 0	V Auto.	-	-	280	280	280	280	

CAPACITANCE^(1,2)

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	$V_{IN} = 0V$	6	pF
Соит	Input/Output Capacitance	Vout = 0V	8	pF

Notes:

1. Tested initially and after any design or process changes that may affect these parameters.

2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, $V_{DD} = 3.3V$.

3.3V I/O AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	1.5 ns
Input and Output Timing and Reference Level	1.5V
Output Load	See Figures 1 and 2

3.3V I/O OUTPUT LOAD EQUIVALENT

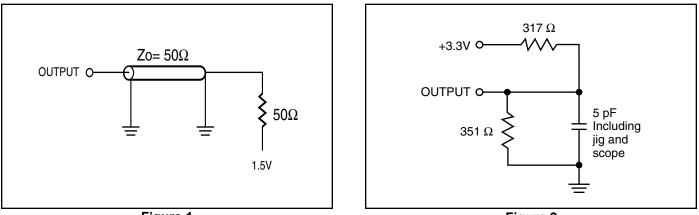


Figure 1

Figure 2

2.5V I/O AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 2.5V
Input Rise and Fall Times	1.5 ns
Input and Output Timing and Reference Level	1.25V
Output Load	See Figures 3 and 4

2.5V I/O OUTPUT LOAD EQUIVALENT

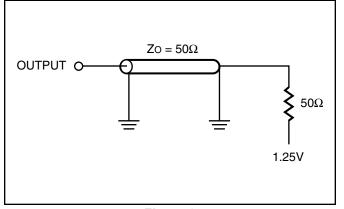
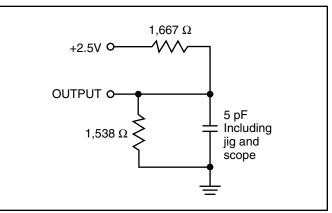
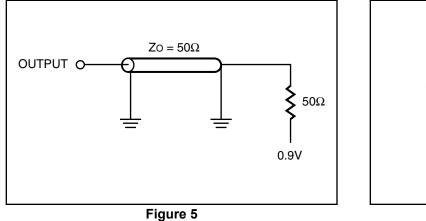
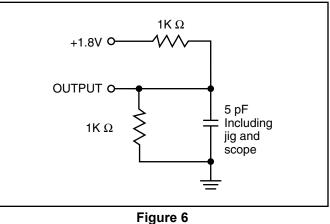


Figure 3


Figure 4

1.8V I/O AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 1.8V
Input Rise and Fall Times	1.5 ns
Input and Output Timing and Reference Level	0.9V
Output Load	See Figures 5 and 6

1.8V I/O OUTPUT LOAD EQUIVALENT

READ/WRITE CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

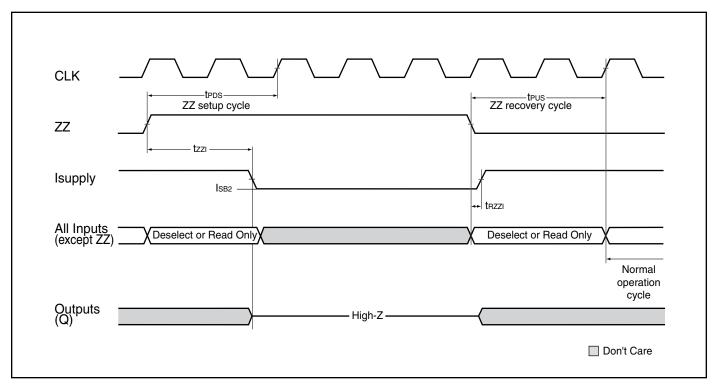
		-2	50	-2	-200		-166	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
fмах	Clock Frequency		250		200	_	166	MHz
tкc	Cycle Time	4.0		5		6		ns
tкн	Clock High Time	1.7		2		2.4		ns
tкL	Clock Low Time	1.7		2		2.3		ns
tкq	Clock Access Time		2.8		3.1		3.8	ns
tkqx ⁽²⁾	Clock High to Output Invalid	0.8		1.5		1.5		ns
t kqlz ^(2,3)	Clock High to Output Low-Z	0.8		1		1.5		ns
t KQHZ ^(2,3)	Clock High to Output High-Z		2.8		3.1		3.8	ns
toeq	Output Enable to Output Valid		2.8		3.1		3.8	ns
toelz ^(2,3)	Output Enable to Output Low-Z	0		0		0		ns
toehz ^(2,3)	Output Disable to Output High-Z		2.8		3.1		3.8	ns
tas	Address Setup Time	1.4		1.4		1.5		ns
tws	Read/Write Setup Time	1.4		1.4		1.5		ns
tces	Chip Enable Setup Time	1.4		1.4		1.5		ns
tse	Clock Enable Setup Time	1.4		1.4		1.5		ns
tadvs	Address Advance Setup Time	1.4		1.4		1.5		ns
tos	Data Setup Time	1.4		1.4		1.5		ns
tан	Address Hold Time	0.4		0.4		0.5		ns
the	Clock Enable Hold Time	0.4		0.4		0.5		ns
twн	Write Hold Time	0.4		0.4		0.5		ns
tсен	Chip Enable Hold Time	0.4		0.4		0.5		ns
tadvh	Address Advance Hold Time	0.4		0.4		0.5		ns
tdн	Data Hold Time	0.4		0.4		0.5		ns
tpower ⁽⁴⁾	VDD (typical) to First Access	1		1		1		ms

Notes:

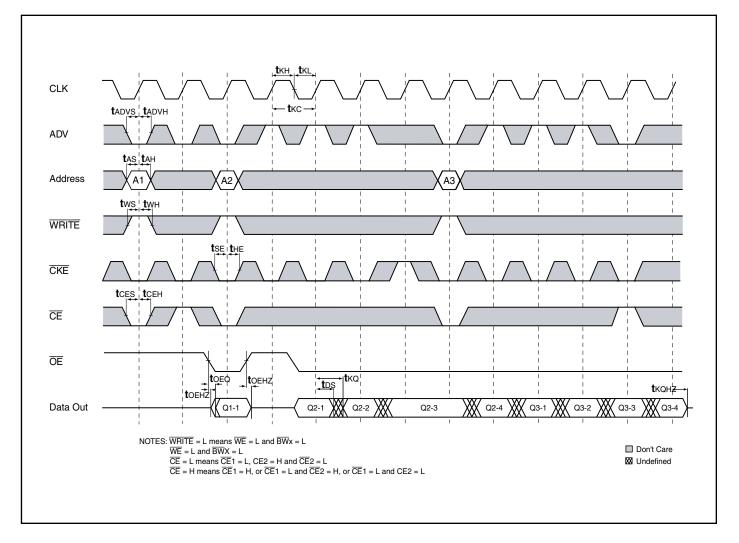
1. Configuration signal MODE is static and must not change during normal operation.

2. Guaranteed but not 100% tested. This parameter is periodically sampled.

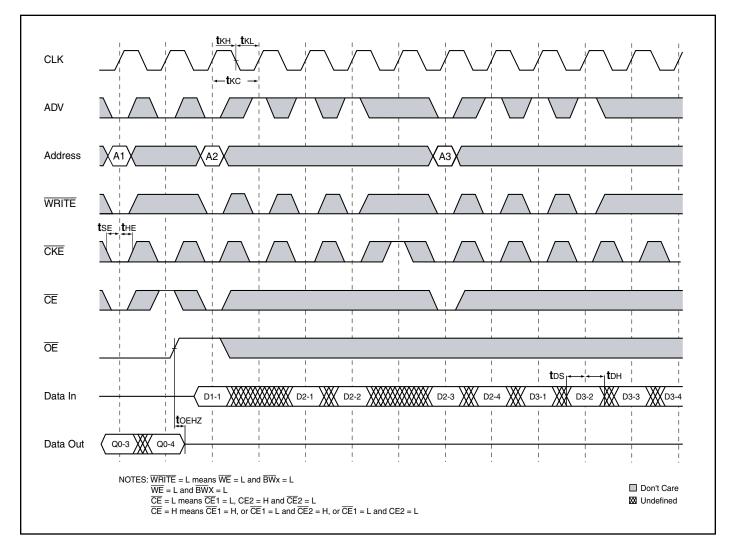
3. Tested with load in Figure 2.


4. tPOWER is the time that the power needs to be supplied above VDD (min) initially before READ or WRITE operation can be initiated.

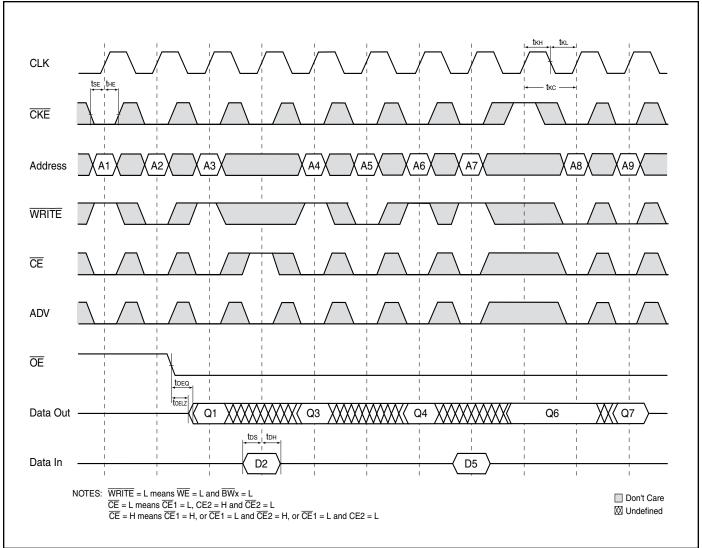
SNOOZE MODE ELECTRICAL CHARACTERISTICS


Symbol	Parameter	Conditions	Temperature Range	Min.	Max.	Unit
ISB2	Current during SNOOZE MODE	$ZZ \geq V_{\text{DD}} \text{ - } 0.2V$	Com.	_	120	mA
			Ind.		130	
			Auto.	—	250	
tPDS	ZZ active to input ignored				2	cycle
tpus	ZZ inactive to input sampled			2	_	cycle
tzzı	ZZ active to SNOOZE current				2	cycle
trzzi	ZZ inactive to exit SNOOZE curren	t		0		ns

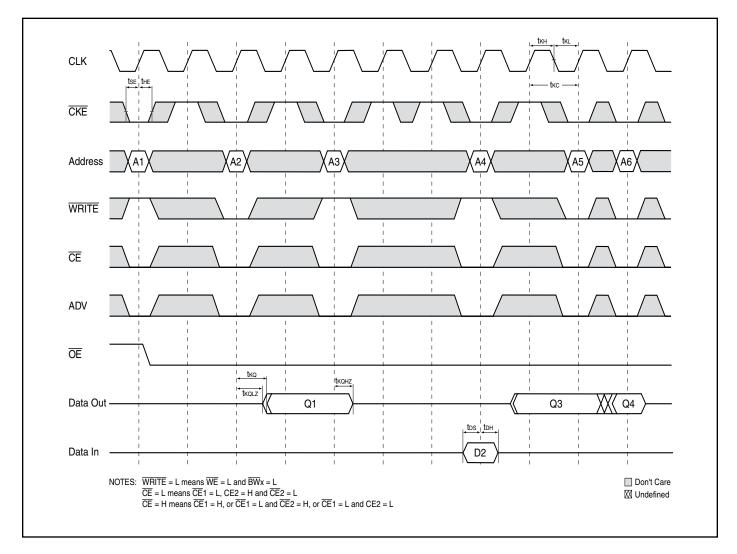
SLEEP MODE TIMING



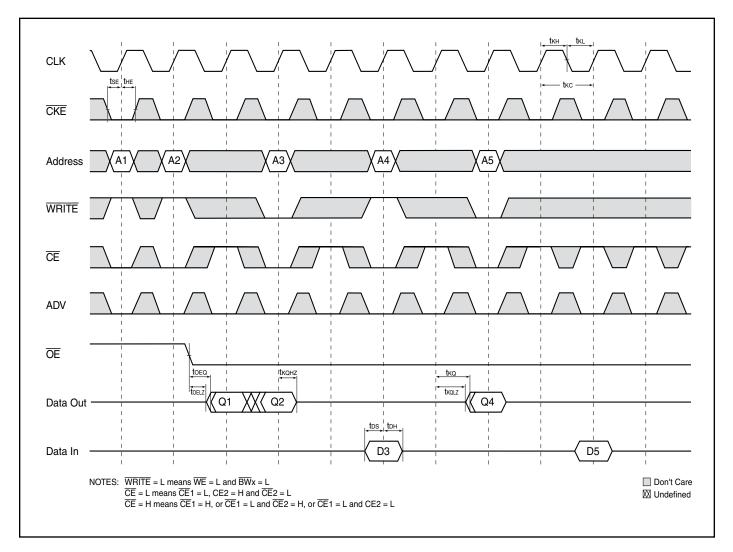
READ CYCLE TIMING



WRITE CYCLE TIMING



SINGLE READ/WRITE CYCLE TIMING



CKE OPERATION TIMING

$\overline{\text{CE}}$ operation timing

IEEE 1149.1 SERIAL BOUNDARY SCAN (JTAG)

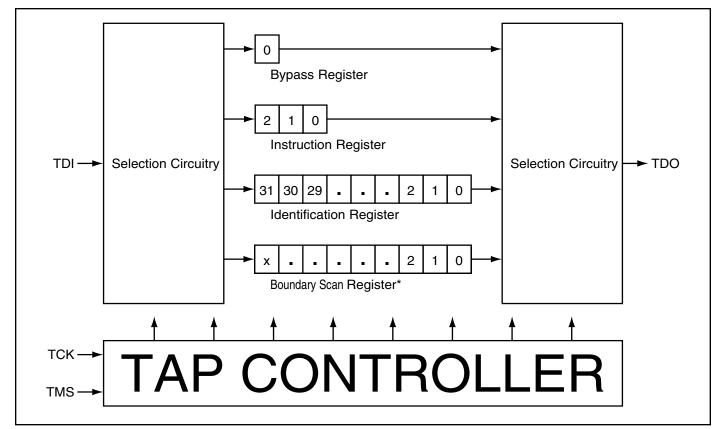
The serial boundary scan Test Access Port (TAP) is only available in the PBGA package. (Not available in TQFP package.) This port operates in accordance with IEEE Standard 1149.1-1900, but does not include all functions required for full 1149.1 compliance. These functions from the IEEE specification are excluded because they place added delay in the critical speed path of the SRAM. The TAP controller operates in a manner that does not conflict with the performance of other devices using 1149.1 fully compliant TAP.

DISABLING THE JTAG FEATURE

The SRAM can operate without using the JTAG feature. To disable the TAP controller, TCK must be tied LOW (Vss) to prevent clocking of the device. TDI and TMS are internally pulled up and may be disconnected. They may alternately be connected to VDD through a pull-up resistor. TDO should be left disconnected. On power-up, the device will start in a reset state which will not interfere with the device operation.

TEST ACCESS PORT (TAP) - TEST CLOCK

The test clock is only used with the TAP controller. All inputs are captured on the rising edge of TCK and outputs are driven from the falling edge of TCK.


TEST MODE SELECT (TMS)

The TMS input is used to send commands to the TAP controller and is sampled on the rising edge of TCK. This pin may be left disconnected if the TAP is not used. The pin is internally pulled up, resulting in a logic HIGH level.

TEST DATA-IN (TDI)

The TDI pin is used to serially input information to the registers and can be connected to the input of any register. The register between TDI and TDO is chosen by the instruction loaded into the TAP instruction register. For information on instruction register loading, see the TAP Controller State Diagram. TDI is internally pulled up and can be disconnected if the TAP is unused in an application. TDI is connected to the Most Significant Bit (MSB) on any register.

TEST DATA OUT (TDO)

The TDO output pin is used to serially clock data-out from the registers. The output is active depending on the current state of the TAP state machine (see TAP Controller State Diagram). The output changes on the falling edge of TCK and TDO is connected to the Least Significant Bit (LSB) of any register.

PERFORMING A TAP RESET

A Reset is performed by forcing TMS HIGH (VDD) for five rising edges of TCK. RESET may be performed while the SRAM is operating and does not affect its operation. At power-up, the TAP is internally reset to ensure that TDO comes up in a high-Z state.

TAP REGISTERS

Registers are connected between the TDI and TDO pins and allow data to be scanned into and out of the SRAM test circuitry. Only one register can be selected at a time through the instruction registers. Data is serially loaded into the TDI pin on the rising edge of TCK and output on the TDO pin on the falling edge of TCK.

Instruction Register

Three-bit instructions can be serially loaded into the instruction register. This register is loaded when it is placed between the TDI and TDO pins. (See TAP Controller Block Diagram) At power-up, the instruction register is loaded with the IDCODE instruction. It is also loaded with the IDCODE instruction if the controller is placed in a reset state as previously described.

When the TAP controller is in the Capture-IR state, the two least significant bits are loaded with a binary "01" pattern to allow for fault isolation of the board level serial test path.

Bypass Register

To save time when serially shifting data through registers, it is sometimes advantageous to skip certain states. The bypass register is a single-bit register that can be placed between TDI and TDO pins. This allows data to be shifted through the SRAM with minimal delay. The bypass register is set LOW (Vss) when the BYPASS instruction is executed.

Boundary Scan Register

The boundary scan register is connected to all input and output pins on the SRAM. Several no connect (NC) pins are also included in the scan register to reserve pins for higher density devices. The x36 configuration has a 75-bit-long register and the x18 configuration also has a 75-bit-long register. The boundary scan register is loaded with the contents of the RAM Input and Output ring when the TAP controller is in the Capture-DR state and then placed between the TDI and TDO pins when the controller is moved to the Shift-DR state. The EXTEST, SAMPLE/PRELOAD and SAMPLE-Z instructions can be used to capture the contents of the Input and Output ring.

The Boundary Scan Order tables show the order in which the bits are connected. Each bit corresponds to one of the bumps on the SRAM package. The MSB of the register is connected to TDI, and the LSB is connected to TDO.

Scan Register Sizes

Register	Bit Size	Bit Size
Name Instruction	(x18)	(x36)
	3	<u>ح</u>
Bypass ID	32	32
Boundary Scan	90	90

Identification (ID) Register

The ID register is loaded with a vendor-specific, 32-bit code during the Capture-DR state when the IDCODE command is loaded to the instruction register. The IDCODE is hardwired into the SRAM and can be shifted out when the TAP controller is in the Shift-DR state. The ID register has vendor code and other information described in the Identification Register Definitions table.

Instruction Field	Description	1M x 36	2M x 18
Revision Number (31:28)	•	XXXX	xxxx
Device Depth (27:23)	Defines depth of SRAM. 2M or 4M	01001	01010
Device Width (22:18)	Defines width of the SRAM. x36 or x18	00100	00011
ISSI Device ID (17:12)	Reserved for future use.	XXXXX	XXXXX
ISSI JEDEC ID (11:1)	Allows unique identification of SRAM vendor.	00001010101	00001010101
ID Register Presence (0)	Indicate the presence of an ID register.	1	1

IDENTIFICATION REGISTER DEFINITIONS