# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



## IS62/65WV2568DALL IS62/65WV2568DBLL



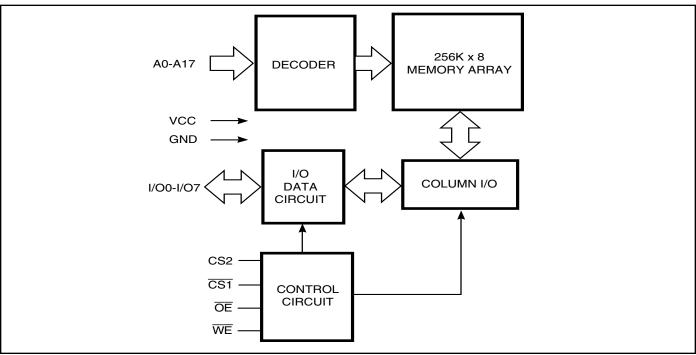
**JUNE 2013** 

## 256K x 8 LOW VOLTAGE, ULTRA LOW POWER CMOS STATIC RAM

#### FEATURES

- High-speed access time: 35ns, 45ns, 55ns
- CMOS low power operation
  - 36 mW (typical) operating
  - 9 µW (typical) CMOS standby
- TTL compatible interface levels
- Single power supply
  - 1.8V ± 10% Vcc (IS62/65WV2568DALL)
  - 2.5V-3.6V Vcc (IS62/65WV2568DBLL)
- Fully static operation: no clock or refresh required
- Three state outputs
- Industrial temperature available
- Lead-free available

#### FUNCTIONAL BLOCK DIAGRAM


### DESCRIPTION

The *ISSI* IS62/65WV2568DALL and IS62/65WV2568DBLL are high-speed, 2M bit static RAMs organized as 256K words by 8 bits. It is fabricated using *ISSI*'s highperformance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields high-performance and low power consumption devices.

When  $\overline{CS1}$  is HIGH (deselected) or when CS2 is LOW (deselected), the device assumes a standby mode at which the power dissipation can be reduced down with CMOS input levels.

Easy memory expansion is provided by using Chip Enable and Output Enable inputs. The active LOW Write Enable (WE) controls both writing and reading of the memory.

The IS62/65WV2568DALL and IS62/65WV2568DBLL are packaged in the JEDEC standard 32-pin TSOP (TYPE I), sTSOP (TYPE I), and 36-pin mini BGA.



Copyright © 2013 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and

c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances



#### **PIN DESCRIPTIONS**

| A0-A17   | Address Inputs      |
|----------|---------------------|
| CS1      | Chip Enable 1 Input |
| CS2      | Chip Enable 2 Input |
| ŌĒ       | Output Enable Input |
| WE       | Write Enable Input  |
| I/O0-I/O | 7Input/Output       |
| NC       | No Connection       |
| Vcc      | Power               |
| GND      | Ground              |

#### **PIN CONFIGURATION**

#### 36-pin mini BGA (B) (6mm x 8mm)

#### 1 2 3 4 5 6 А A8 A2 1/00 A7 В WE A4 A5 С Í/O 1/0 D GΝ Е 1/06 A17 F 1/02 (1/07 (A9 A16 1/03 OE (A10 (A15 (A13) G A12 A14) Н . A1<sup>.</sup>

| A4 🗖 16 17 🗖 A3 |
|-----------------|
|-----------------|

32-pin TSOP (TYPE I), sTSOP (TYPE I)

#### Integrated Silicon Solution, Inc. — www.issi.com Rev. C 05/24/2013



| Symbol | Parameter                            | Value           | Unit |  |
|--------|--------------------------------------|-----------------|------|--|
| VTERM  | Terminal Voltage with Respect to GND | -0.2 to Vcc+0.3 | V    |  |
| Тѕтс   | Storage Temperature                  | -65 to +150     | °C   |  |
| Рт     | Power Dissipation                    | 1.0             | W    |  |

Note:

 Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

#### **OPERATING RANGE (Vcc)**

| Range           | Ambient Temperature | IS62/65WV2568DALL | IS62/65WV2568DBLL |
|-----------------|---------------------|-------------------|-------------------|
| Commercial      | 0°C to +70°C        | 1.8V ± 10%        | 2.5V - 3.6V       |
| Industrial      | –40°C to +85°C      | 1.8V ± 10%        | 2.5V - 3.6V       |
| Automotive (A3) | -40°C to +125°C     | 1.8V ± 10%        | 2.5V - 3.6V       |

#### DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

| Symbol      | Parameter           | <b>Test Conditions</b>                  | Vcc              | Min. | Max.      | Unit |
|-------------|---------------------|-----------------------------------------|------------------|------|-----------|------|
| Vон         | Output HIGH Voltage | Іон = -0.1 mA                           | 1.8V ± 10%       | 1.4  | _         | V    |
|             |                     | Іон = -1 mA                             | 2.5-3.6V         | 2.2  | —         | V    |
| Vol         | Output LOW Voltage  | lo∟ = 0.1 mA                            | 1.8V ± 10%       |      | 0.2       | V    |
|             |                     | lo∟ = 1.0 mA                            | 2.5-3.6V         | —    | 0.4       | V    |
| Vih         | Input HIGH Voltage  |                                         | 1.8V ± 10%       | 1.4  | Vcc + 0.2 | V    |
|             |                     |                                         | 2.5-3.6V         | 2.2  | Vcc + 0.3 | V    |
| $VIL^{(1)}$ | Input LOW Voltage   |                                         | 1.8V ± 10%       | -0.2 | 0.4       | V    |
|             |                     |                                         | 2.5-3.6V         | -0.2 | 0.6       | V    |
| Iц          | Input Leakage       | $GND \leq V \text{IN} \leq V \text{CC}$ |                  | -1   | 1         | μA   |
| Ilo         | Output Leakage      | $GND \leq VOUT \leq VCC, C$             | Outputs Disabled | -1   | 1         | μA   |

For IS62/65WV2568DALL:

 $V_{\text{IL}}$  (min.) = -1.0V AC (pluse width < 10ns). Not 100% tested.

ViH (max.) = Vcc + 1.0V AC; (pluse width < 10ns). Not 100% tested.

For IS62/65WV2568DBLL:

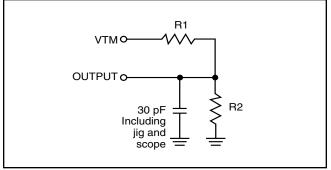
VIL (min.) = -2.0V AC (pluse width < 10ns). Not 100% tested. VIH (max.) = Vcc + 2.0V AC; (pluse width < 10ns). Not 100% tested.



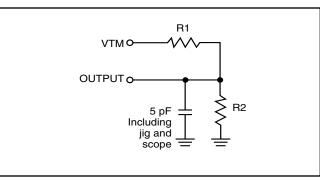
#### CAPACITANCE<sup>(1)</sup>

| Symbol | Parameter                | Conditions    | Max. | Unit |
|--------|--------------------------|---------------|------|------|
| Cin    | Input Capacitance        | $V_{IN} = 0V$ | 8    | pF   |
| Соит   | Input/Output Capacitance | Vout = 0V     | 10   | pF   |

Note:


1. Tested initially and after any design or process changes that may affect these parameters.

#### **ACTEST CONDITIONS**


| Parameter                                      | 62WV2568DALL<br>(Unit) | 62WV2568DBLL<br>(Unit) |  |
|------------------------------------------------|------------------------|------------------------|--|
| Input Pulse Level                              | 0.4V to Vcc-0.2V       | 0.4V to Vcc-0.3V       |  |
| Input Rise and Fall Times                      | 5 ns                   | 5ns                    |  |
| Input and Output Timing<br>and Reference Level | Vref                   | VREF                   |  |
| Output Load                                    | See Figures 1 and 2    | See Figures 1 and 2    |  |

| 1.8V ± 10% | 2.5V - 3.6V          |                                   |
|------------|----------------------|-----------------------------------|
| 3070       | 3070                 |                                   |
| 3150       | 3150                 |                                   |
| 0.9V       | 1.5V                 |                                   |
| 1.8V       | 2.8V                 |                                   |
|            | 3070<br>3150<br>0.9V | 3070 3070   3150 3150   0.9V 1.5V |

#### AC TEST LOADS











| Symbol | Parameter             | Test Conditions                                            |                     | Max.<br>35ns | Max.<br>45ns | Max.<br>55ns | Unit |
|--------|-----------------------|------------------------------------------------------------|---------------------|--------------|--------------|--------------|------|
| lcc    | Vcc Dynamic Operating | Vcc = Max.,                                                | Com.                | 15           | 12           | 10           | mA   |
|        | Supply Current        | IOUT = 0 mA, $f = f_{MAX}$                                 | Ind.                | 20           | 15           | 12           |      |
|        |                       |                                                            | Auto.               | 25           | 20           | 15           |      |
|        |                       |                                                            | typ. <sup>(2)</sup> | 10           | 8            | 6            |      |
| ISB1   | TTL Standby Current   | CS2 = VIL                                                  | Com.                | 0.1          | 0.1          | 0.1          | mA   |
|        | (TTL Inputs)          | f = 0Hz                                                    | Ind.                | 0.2          | 0.2          | 0.2          |      |
|        |                       |                                                            | Αυτο.               | 0.3          | 0.3          | 0.3          |      |
| ISB2   | CMOS Standby          | (1) $0V \le CS2 \le 0.2V$                                  | Com.                | 7            | 7            | 7            | μA   |
|        | Current (CMOS Inputs) | OR                                                         | Ind.                | 10           | 10           | 10           | ·    |
|        |                       | (2) $\overline{\text{CS1}} \ge \text{VDD} - 0.2\text{V}$ , | Auto.               | _            | 30           | 30           |      |
|        |                       | CS2 <u>≥</u> VDD - 0.2V<br>f= 0Hz                          | typ. <sup>(2)</sup> |              | 3            |              |      |

### POWER SUPPLY CHARACTERISTICS<sup>(1)</sup> (Over Operating Range)

Note:

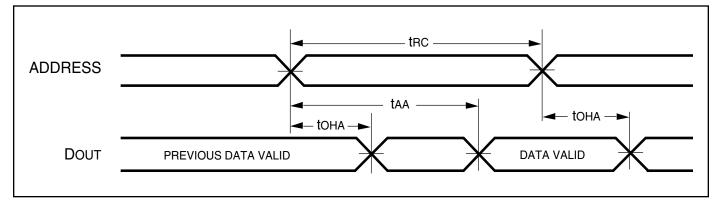
1. At  $f = f_{MAX}$ , address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change. 2. Typical values are measured at Vcc = 3.0V, Ta = 25°C and not 100% tested.

## IS62/65WV2568DALL, IS62/65WV2568DBLL



#### **READ CYCLE SWITCHING CHARACTERISTICS**<sup>(1)</sup> (Over Operating Range)

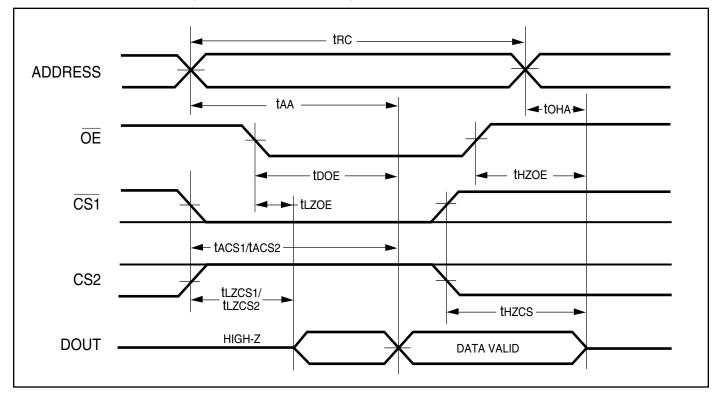
|                              |                          | 35   | ins  | 45   | ins  | 55   | ns   |      |
|------------------------------|--------------------------|------|------|------|------|------|------|------|
| Symbol                       | Parameter                | Min. | Max. | Min. | Max. | Min. | Max. | Unit |
| tRC                          | Read Cycle Time          | 35   | _    | 45   | _    | 55   | _    | ns   |
| taa                          | Address Access Time      |      | 35   |      | 45   | _    | 55   | ns   |
| toha                         | Output Hold Time         | 10   |      | 10   |      | 10   |      | ns   |
| tacs1/tacs2                  | CS1/CS2 Access Time      | _    | 35   | _    | 45   | _    | 55   | ns   |
| tdoe                         | OE Access Time           |      | 15   | _    | 20   |      | 25   | ns   |
| thzoe <sup>(2)</sup>         | OE to High-Z Output      | _    | 10   | _    | 15   | _    | 20   | ns   |
| tlzoe <sup>(2)</sup>         | OE to Low-Z Output       | 5    | _    | 5    | —    | 5    | _    | ns   |
| tHZCS1/tHZCS2 <sup>(2)</sup> | CS1/CS2 to High-Z Output | 0    | 10   | 0    | 15   | 0    | 20   | ns   |
| tLZCS1/tLZCS2 <sup>(2)</sup> | CS1/CS2 to Low-Z Output  | 10   | _    | 10   | _    | 10   | _    | ns   |


Notes:

1. Test conditions and output loading conditions are specified in the AC Test Conditions and AC Test Loads (Figure 1).

2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

#### **AC WAVEFORMS**


#### **READ CYCLE NO. 1**<sup>(1,2)</sup> (Address Controlled) ( $\overline{CS1} = \overline{OE} = VIL$ , CS2 = $\overline{WE} = VIH$ )





#### **AC WAVEFORMS**

**READ CYCLE NO. 2**<sup>(1,3)</sup> (CS1, CS2, OE Controlled)

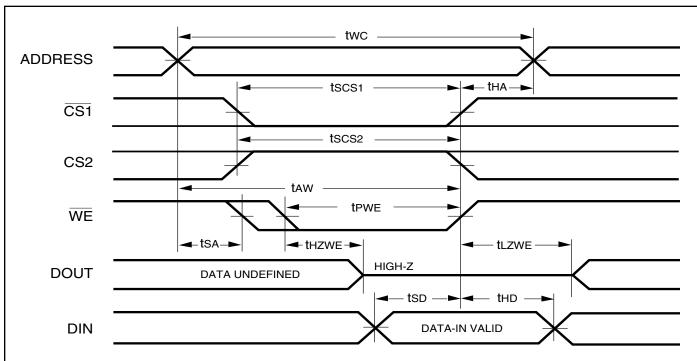


#### Notes:

- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected.  $\overline{OE}$ ,  $\overline{CS1}$ = VIL. CS2= $\overline{WE}$ =VIH.
- 3. Address is valid prior to or coincident with  $\overline{CS1}$  LOW and CS2 HIGH transition.



|                      |                                 | 35ns |      | 45   | 45ns 55ns |      | ns   |      |
|----------------------|---------------------------------|------|------|------|-----------|------|------|------|
| Symbol               | Parameter                       | Min. | Max. | Min. | Max.      | Min. | Max. | Unit |
| twc                  | Write Cycle Time                | 35   | _    | 45   | —         | 55   | —    | ns   |
| tscs1/t <b>scs</b> 2 | CS1/CS2 to Write End            | 25   |      | 35   |           | 45   |      | ns   |
| taw                  | Address Setup Time to Write End | 25   | _    | 35   | _         | 45   | _    | ns   |
| tha                  | Address Hold from Write End     | 0    |      | 0    | —         | 0    | —    | ns   |
| tsa                  | Addrress Setup Time             | 0    |      | 0    |           | 0    |      | ns   |
| tPWE                 | WE Pulse Width                  | 30   | _    | 35   | —         | 40   | _    | ns   |
| tsp                  | Data Setup to Write End         | 15   | _    | 20   | —         | 25   | _    | ns   |
| tнD                  | Data Hold from Write End        | 0    | _    | 0    | —         | 0    | _    | ns   |
| tHZWE                | WE LOW to High-Z Output         |      | 20   |      | 20        | —    | 20   | ns   |
| <b>t</b> LZWE        | WE HIGH to Low-Z Output         | 5    | _    | 5    | _         | 5    | _    | ns   |

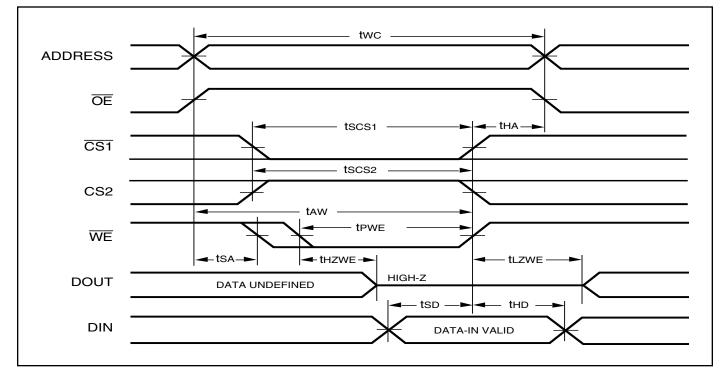

#### WRITE CYCLE SWITCHING CHARACTERISTICS<sup>(1,2)</sup> (Over Operating Range)

#### Notes:

1. Test conditions and output loading conditions are specified in the AC Test Conditions and AC Test Loads (Figure 1).

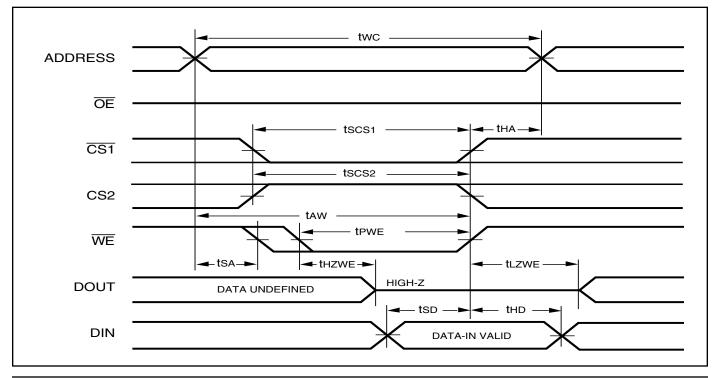
2. The internal write time is defined by the overlap of CS1 LOW, CS2 HIGH and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.

3. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.




### AC WAVEFORMS

### WRITE CYCLE NO. 1 ( $\overline{CS1}/CS2$ Controlled, $\overline{OE}$ = HIGH or LOW)




#### **AC WAVEFORMS**

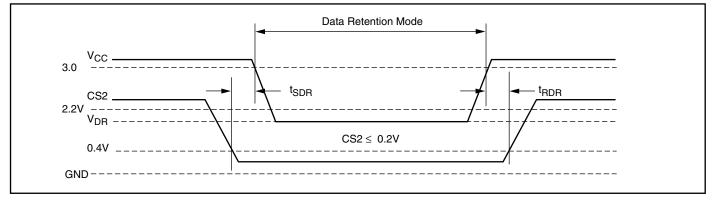


WRITE CYCLE NO. 2 (WE Controlled: OE is HIGH During Write Cycle)

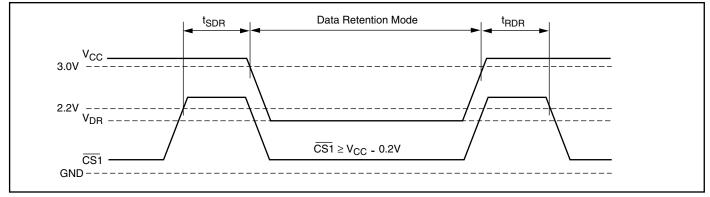
WRITE CYCLE NO. 3 (WE Controlled: OE is LOW During Write Cycle)






#### DATA RETENTION SWITCHING CHARACTERISTICS

| Symbol     | Parameter                 | Test Condition                                          | Min. | Max. | Unit |
|------------|---------------------------|---------------------------------------------------------|------|------|------|
| Vdr        | Vcc for Data Retention    | See Data Retention Waveform                             | 1.5  | 3.6  | V    |
| <b>D</b> R | Data Retention Current    | (1) $0V \le CS2 \le 0.2V$ , or Com.                     | _    | 7    | μA   |
|            |                           | (2) $CS1 \ge V_{DD} - 0.2V$ , $CS2 \ge Vdd - 0.2V$ Ind. |      | 10   |      |
|            |                           | Auto.                                                   | _    | 20   |      |
|            |                           | typ. <sup>(1)</sup>                                     | —    | 2    |      |
| tsdr       | Data Retention Setup Time | See Data Retention Waveform                             | 0    |      | ns   |
| trdr       | Recovery Time             | See Data Retention Waveform                             | trc  |      | ns   |


#### Note:

1. Typical values are measured at Vcc =  $V_{DR}(min)$ , TA = 25°C and not 100% tested.

#### DATA RETENTION WAVEFORM (CS2 Controlled)



### DATA RETENTION WAVEFORM (CS1 Controlled)



Note: CS2 must satisy either CS2  $\geq$  Vcc -0.2V or CS2  $\leq$  0.2V

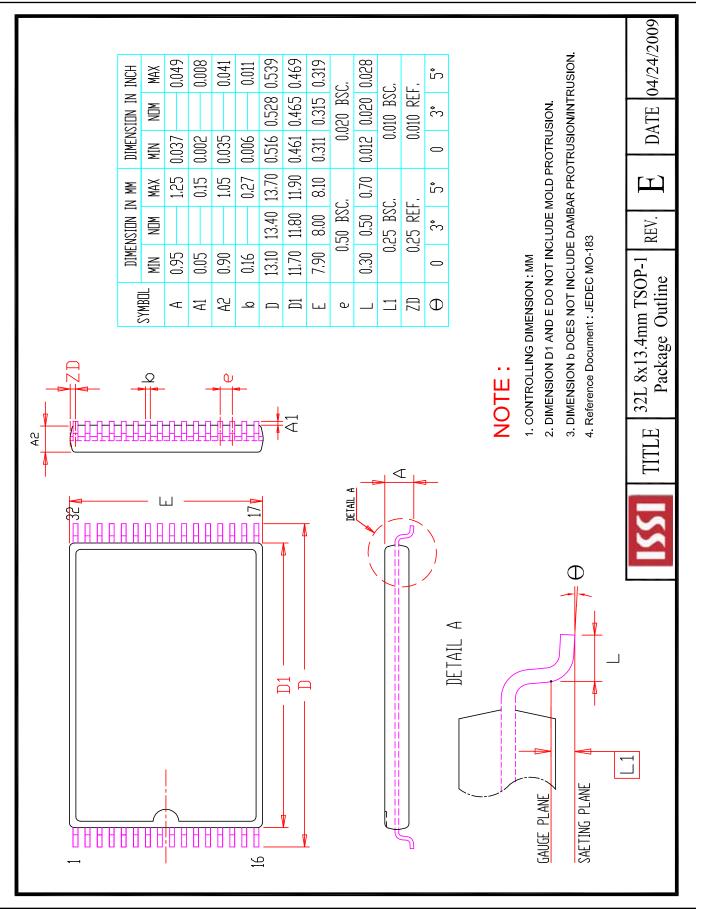


#### **ORDERING INFORMATION**

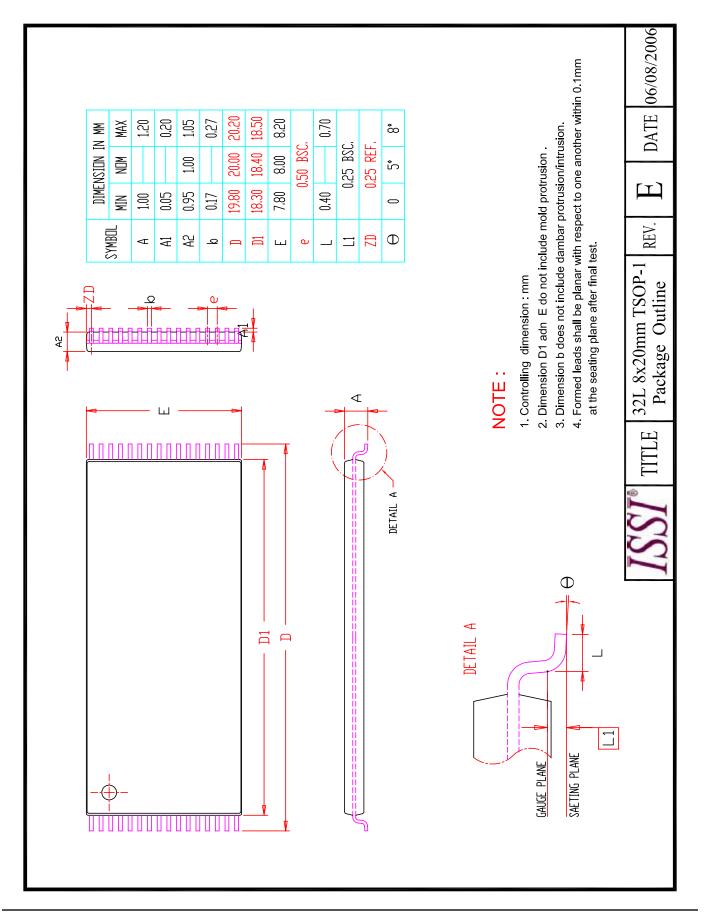
#### IS62WV2568DALL (1.8 $\pm$ 10%) Industrial Range: -40°C to +85°C

| Speed (ns) | Order Part No.       | Package                         |
|------------|----------------------|---------------------------------|
| 55         | IS62WV2568DALL-55TI  | TSOP, TYPE I                    |
| 55         | IS62WV2568DALL-55TLI | TSOP, TYPE I, Lead-free         |
| 55         | IS62WV2568DALL-55BI  | mini BGA (6mm x 8mm)            |
| 55         | IS62WV2568DALL-55BLI | mini BGA (6mm x 8mm), Lead-free |
| 55         | IS62WV2568DALL-55HI  | sTSOP, TYPE I                   |
| 55         | IS62WV2568DALL-55HLI | sTSOP, TYPE I, Lead-free        |

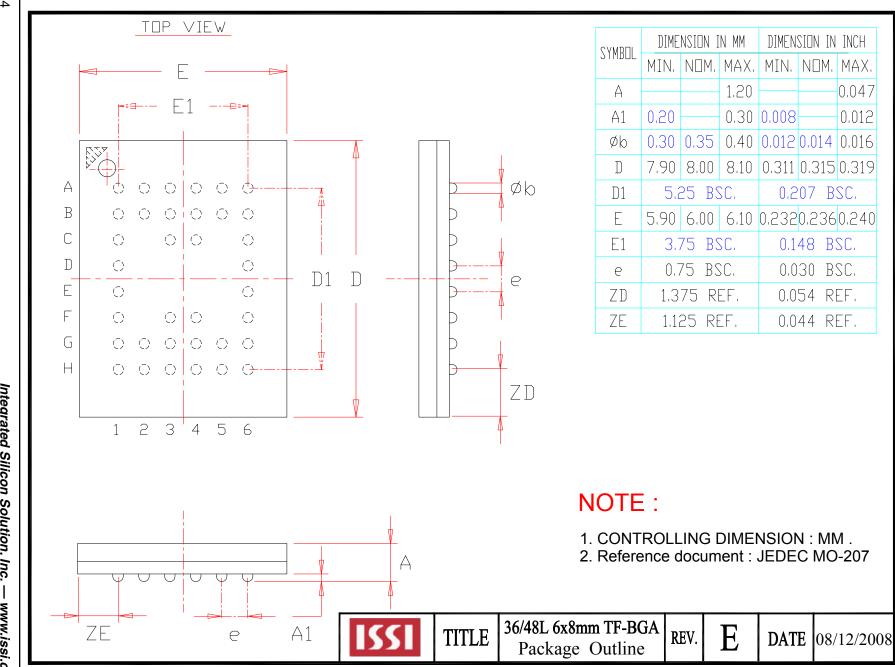
#### IS62WV2568DBLL (2.5V - 3.6V) Industrial Range: -40°C to +85°C


| Speed (ns) | Order Part No.       | Package                         |
|------------|----------------------|---------------------------------|
| 35         | IS62WV2568DBLL-35HLI | sTSOP, TYPE I                   |
| 35         | IS62WV2568DBLL-35TLI | TSOP, TYPE I, Lead-free         |
| 45         | IS62WV2568DBLL-45TI  | TSOP, TYPE I                    |
| 45         | IS62WV2568DBLL-45TLI | TSOP, TYPE I, Lead-free         |
| 45         | IS62WV2568DBLL-45BI  | mini BGA (6mm x 8mm)            |
| 45         | IS62WV2568DBLL-45BLI | mini BGA (6mm x 8mm), Lead-free |
| 45         | IS62WV2568DBLL-45HI  | sTSOP, TYPE I                   |
| 45         | IS62WV2568DBLL-45HLI | sTSOP, TYPE I, Lead-free        |

#### IS65WV2568DBLL (2.5V - 3.6V) Automotive Range (A3): -40°C to +125°C


| Speed (ns) | Order Part No.        | Package                  |
|------------|-----------------------|--------------------------|
| 45         | IS65WV2568DBLL-45TLA3 | TSOP, TYPE I, Lead-free  |
| 45         | IS65WV2568DBLL-45HLA3 | sTSOP, TYPE I, Lead-free |




## IS62/65WV2568DALL, IS62/65WV2568DBLL













**1**4