imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

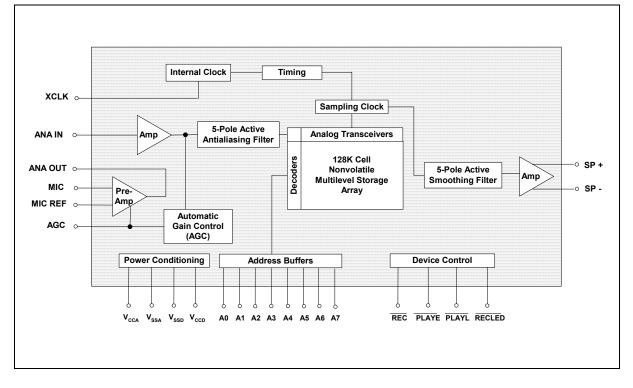
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SINGLE-CHIP VOICE RECORD/PLAYBACK DEVICES 16- AND 20-SECOND DURATION

TABLE OF CONTENTS

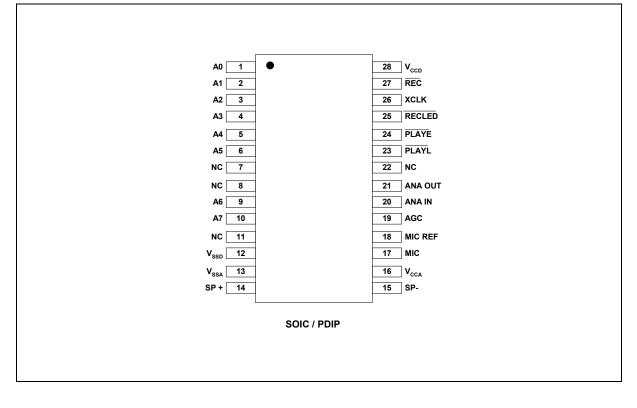
1. GENERAL DESCRIPTION	3
2. FEATURES	3
3. BLOCK DIAGRAM	4
4. PIN CONFIGURATION	5
5. PIN DESCRIPTION	6
6. FUNCTIONAL DESCRIPTION	10
 6.1. DETAILED DESCRIPTION 6.2. OPERATIONAL MODES 6.2.1. Operational Modes Description 	
7. TIMING DIAGRAMS	13
8. ABSOLUTE MAXIMUM RATINGS	14
8.1 Operating Conditions	
9. ELECTRICAL CHARACTERISTICS	16
 9.1. PARAMETERS FOR PACKAGED PARTS	
10. TYPICAL APPLICATION CIRCUIT	24
11. PACKAGE DRAWING AND DIMENSIONS	27
 11.1. 28-Lead 300 mil Plastic Small Outline IC (SOIC) 11.2. 28-Lead 600 mil Plastic Dual Inline Package (PDIP) 11.3. Die Physical Layout ^[1] 	
12. ORDERING INFORMATION	
13. VERSION HISTORY	

1. GENERAL DESCRIPTION


Winbond's ISD1400 ChipCorder[®] series provide high-quality, single-chip, Record/Playback solutions to short-duration messaging applications. The CMOS devices include an on-chip oscillator, microphone preamplifier, automatic gain control, anti-aliasing filter, smoothing filter, and speaker amplifier. A minimum Record/Playback subsystem can be configured with a microphone, a speaker, several passive components, two push buttons and a power source. Recordings are stored into on-chip non-volatile memory cells, providing zero-power message storage. This unique, single-chip solution is made possible through Winbond's patented Multi-Level Storage (MLS) technology. Voice and audio signals are stored directly into memory in their natural form, providing high-quality, solid-state voice reproduction.

2. FEATURES

- Single +5 volt power supply
- Duration: 14 and 20 seconds.
- Easy-to-use single-chip, voice record/playback solution
- · High-quality, natural voice/audio reproduction
- Manual switch or microcontroller compatible Playback can be edge- or level-activated
- Directly cascadable for longer durations
- Automatic power-down (push-button mode)
 - Standby current 1 μA (typical)
- Zero-power message storage
 - Eliminates battery backup circuits
- · Fully addressable to handle multiple messages
- 100-year message retention (typical)
- 100,000 record cycles (typical)
- On-chip oscillator
- Programmer support for play-only applications
- Packaged types: Leaded and Lead-Free
- Available in die, PDIP and SOIC
- Temperature:
 - Commercial Packaged unit : 0°C to 70°C, Die : 0°C to 50°C
 - Industrial Packaged unit : -40°C to 85°C



3. BLOCK DIAGRAM

4. PIN CONFIGURATION

Note: NC means must be No connect

5. PIN DESCRIPTION

PIN NAME	PIN NO	FUNCTION
A0-A7	1-6, 9, 10	Address Inputs : The address inputs have two functions, depending on the level of the two Most Significant Bits (MSB) of the address.
		If either or both of the two MSBs are LOW, the inputs are all interpreted as address bits and are used as the start address for the current record or playback cycle. The address pins are inputs only and do not output internal address information as the operation progresses. Address inputs are latched by the
		falling edge of PLAYE, PLAYL, or REC.
		If both A6 & A7 are HIGH, then the device is in special operational modes. Please refer to operational modes section for details.
NC	7, 8, 11, 22	NC: No Connect
V _{SSD} , V _{SSA}	12, 13	Ground : Similar to V_{CCA} and V_{CCD} , the analog and digital circuits internal to the ISD1400 series use separate ground buses to minimize noise. These pins should be tied together as close as possible to the device.
SP+, SP-	14, 15	Speaker Outputs : The SP+ and SP- pins provide direct drive for loudspeakers with impedances as low as 16 Ω . A single output may be used, but, for direct-drive loudspeakers, the two opposite-polarity outputs provide an improvement in output power of up to four times over a single-ended connection. Forthermore, when SP+ and SP- are used, a speakercoupling capacitor is not required. A single-ended connection will require an AC-coupling capacitor between the SP pin and the speaker. The speaker outputs are in a high-impedance state during a record cycle, and held at V _{SSA} during power down.
V _{CCA} , V _{CCD}	16, 28	Supply Voltage : Analog and digital circuits internal to the ISD1400 series use separate power buses to minimize noise on the chip. These voltage buses are brought out to separate pins on the package and should be tied together as close to the supply as possible. It is important that the power supply be decoupled as close to the package as possible.
MIC	17	Microphone : The microphone input transfers its signal to the on-chip preamplifier. An on-chip Automatic Gain Control (AGC) circuit controls the gain of this preamplifier from –15 to 24dB. An external microphone should be AC coupled to this pin via a series capacitor. The capacitor value, together with the internal 10 K Ω resistance on this pin, determines the low-frequency cutoff for the ISD1400 series passband. See Winbond's Application Information for additional information on low-frequency cutoff calculation.

PIN NAME	PIN NO	FUNCTION
MIC REF	18	Microphone Reference : The MIC REF input is the inverting input to the microphone preamplifier. This provides a noise-canceling or common-mode rejection input to the device when connected to a differential microphone.
AGC	19	Automatic Gain Control (AGC): The AGC dynamically adjusts the gain of the preamplifier to compensate for the wide range of microphone input levels. The AGC allows the full range of sound, from whispers to loud sounds, to be recorded with minimal distortion. The "attack" time is determined by the time constant of a 5 K Ω internal resistance and an external capacitor (C6 on the schematic of section 11, Figure 5) connected from the AGC pin to V _{SSA} analog ground. The "release" time is determined by the time constant of an external resistor (R5) and an external capacitor (C6) connected in parallel between the AGC pin and V _{SSA} analog ground. Nominal values of 470 K Ω and 4.7 µF give satisfactory results in most cases.
ANA IN	20	Analog Input : The analog input pin transfers its signal to the chip for recording. For microphone inputs, the ANA OUT pin should be connected via an external capacitor to the ANA IN pin. This capacitor value, together with the 3.0 K Ω input impedance of ANA IN, is selected to give additional cutoff at the low-frequency end of the voice passband. If the desired input is derived from a source other than a microphone, the signal can be fed, capacitively coupled, into the ANA IN pin directly.
ANA OUT	21	Analog Output : This pin provides the preamplifier output to the user. The voltage gain of the preamplifier is determined by the voltage level at the AGC pin.
PLAYL ^[2]	23	Playback, Level-Activated : When this input signal is held LOW, a playback cycle is initiated, and playback continues until PLAYL is pulled HIGH, or an EOM marker is detected. The device automatically powers down and enters into standby mode upon completion of a playback cycle.
	24	Playback, Edge-Activated: When a LOW-going transition is
		input to this pin, a playback cycle begins. Taking PLAYE HIGH during a playback cycle will not terminate the current cycle. Playback continues until an EOM is encountered. Upon completion of a playback cycle, the device automatically powers down and enters into standby mode.

PIN NAME	PIN NO		FUNCTION	
RECLED	25	Record LED : The RECLED output is LOW during a record cycle. It can be used to drive an LED to indicate a record		
				RECLED pulses LOW ge is encountered in a
XCLK	26	External Clock : The input has an internal pull-down device. The ISD1400 is configured at the factory with an internal sampling clock frequency that guarantees its minimum nominal record/playback time. For instance, an ISD1420 operating within specification will be observed to always have a minimum of 20 seconds of recording time. The sampling frequency is then maintained to a variation of <u>+</u> 2.25 percent over the commercial temperature and operating voltage ranges, while still maintaining the minimum specified recording duration. This will result in some devices having a few percent more than nominal recording time. The Internal clock has a <u>+</u> 5 percent tolerance over the industrial temperature and voltage range. A regulated power supply is recommended for industrial temperature parts. If greater precision is required, the device can be clocked through the XCLK pin as follows:		
		EXTERNA	L CLOCK SAM	PLE RATES
		Part Number	Sample Rate	Required Clock
		ISD1416	8.0 kHz	1024 kHz
		ISD1420	6.4 kHz	819.2 kHz
		because the antialias aliasing problems car one recommended. T critical, as the clock	ing and smooth occur if the san The duty cycle o is immediately	should not be varied ing filters are fixed, and nple rate differs from the on the input clock is not divided by two. If the nust be connected to

PIN NAME	PIN NO	FUNCTION
REC	27	Record Input: The REC input is an active-LOW record
		signal. The device records whenever REC is LOW. This signal must remain LOW for the duration of the recording.
		REC takes precedence over either playback (PLAYE or
		PLAYL) signal. If REC is pulled LOW during a playback cycle, the playback immediately ceases and recording begins.
		A record cycle is completed when $\overrightarrow{\text{REC}}$ is pulled HIGH or the memory space is filled.
		And end-of-message marker (EOM) is internally recorded, enabling a subsequent playback cycle to terminate appropriately. The device automatically powers down to
		standby mode when REC goes HIGH.

Notes:

- ^[1] The REC signal is debounced for 50 ms on the rising edge to prevent a false retriggering from a pushbutton switch.
- ^[2] During playback, if either PLAYE or PLAYL is held LOW during EOM or OVF, the device will still enter into standby mode and the internal oscillator and timing generator will stop. However, the rising
 - edge of PLAYE and PLAYL are not debounced and any subsequent falling edge (particularly switch bounce) present on the input pins will initiate another playback.

6. FUNCTIONAL DESCRIPTION

6.1. DETAILED DESCRIPTION

Speech/Sound Quality

The Winbond's ISD1400 series offer 6.4 and 8.0 kHz sampling frequencies, allowing the user a choice of speech quality options. The speech samples are stored directly into on-chip non-volatile memory without the digitization and compression associated with other solutions. Direct analog storage provides a very true, natural sounding reproduction of voice, music, tones, and sound effects not available with most solidstate digital solutions.

Duration

To meet end system requirements, the ISD1400 series offer single-chip solutions at 16 and 20 seconds.

Part Number	Duration (Seconds)	Input Sample Rate (kHz)	Typical Filter Pass Band* (kHz)
ISD1416	16	8.0	3.3
ISD1420	20	6.4	2.6

TABLE 1: ISD1400 SERIES SUMMARY

* 3dB roll-off-point

EEPROM Storage

One of the benefits of Winbond's ChipCorder[®] technology is the use of on-chip non-volatile memory, providing zero-power message storage. The message is retained for up to 100 years typically without power. In addition, the device can be re-recorded typically over 100,000 times.

Basic Operation

The ISD1400 ChipCorder[®] series are controlled by a single control signal, REC, PLAYE (edge-

activated playback) or PLAYL (level-activated playback). The ISD1400 parts are configured for simplicity of design in a single/multiple-message application. Using the address lines will allow multiple message applications.

Automatic Power-Down Mode

At the end of a playback or record cycle, the ISD1400 series automatically return to a low-power standby mode, consuming typically 0.5 μ A. After a playback cycle, the device powers down automatically at the end of the message. After a record cycle, the device powers down immediately after REC is pulled to HIGH.

Addressing

In addition to providing single message application, the ISD1400 series provide a full addressing capability.

The ISD1400 series have 160 distinct addressable segments, providing the below resolutions. See Application Information for ISD1400 address tables.

Part Number	Minimum Duration (Seconds)
ISD1416	100 ms
ISD1420	125 ms

TABLE 2: DEVICE PLAYBACK/RECORD DURATIONS

6.2. OPERATIONAL MODES

The ISD1400 series have several built-in operational modes providing maximum functionality with a minimal additional components. The operational modes use the address pins, but are mapped to outside the normal address range. When the two Most Significant Bits (MSBs), A6 and A7, are HIGH, the remaining address signals are interpreted as mode bits and not as address bits. Therefore, operational modes and direct addressing are not compatible and cannot be used simultaneously.

There are two important considerations for using operational modes. Firstly, all operations begin initially at address 0, which is the beginning address. Later operations can begin at other address locations, depending on the operational mode(s) chosen. In addition, the address pointer is reset to 0 when the device is changed from record to playback but not from playback to record when A4 is HIGH in Operational Mode.

Secondly, an Operational Mode is executed when any of the control inputs, PLAYE, PLAYL or

REC, goes LOW and the two MSBs are HIGH. This Operational Mode remains in effect until the next LOW-going control input signal, at which point the current address/mode levels are sampled and executed.

6.2.1. Operational Modes Description

The Operational Modes can be used in conjunction with a microcontroller, or they can be hardwired to provide the desired system operation.

A0 – Message Cueing

Message Cueing allows the user to skip through messages, without knowing the actual physical addresses of each message. Each LOW pulse causes the internal address pointer to skip to the next message. This mode is used for playback only and typically used with the A4 Operational Mode.

A1 – Delete EOM Markers

The A1 Operational Mode allows recording messages sequentially and playback as a single message with only one \overrightarrow{EOM} set at the end of the final message.

A2 – Unused

A3 – Message Looping

The A3 Operational Mode allows repeating playback a message continuously from the beginning of the memory. A message can completely fill the ISD1400 device and will loop from beginning to end. Pulsing $\overrightarrow{\mathsf{PLAYE}}$ will start the playback and pulsing $\overrightarrow{\mathsf{PLAYL}}$ will end the playback.

A4 – Consecutive Addressing

During normal operation, the address pointer will reset when a message is played through to an $\overline{\text{EOM}}$ marker. The A4 Operational Mode inhibits the address pointer reset, allowing messages to be recorded or played back consecutively. When the device is in a static state; i.e., not recording or playback, momentarily taking this pin LOW will reset the address counter to zero.

A5 – Unsued

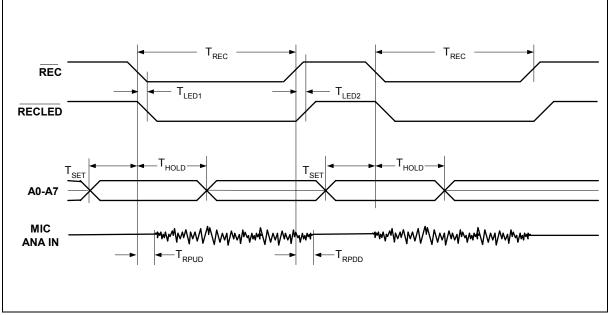

Mode	Function	Typical Use	Jointly Compatible ^[1]
A0	Message cueing	Fast-forward through messages	A4
A1	Delete EOM markers	Position EOM marker at the end of the last message	A3, A4
A2	Unused		
A3	Looping	Continuous playback from Address 0	A1
A4	Consecutive addressing	Record/playback multiple consecutive messages	A0, A1
A5	Unused		

TABLE 3: OPERATIONAL MODES

¹ Additional Operational Modes can be used simultaneously with the given mode.

7. TIMING DIAGRAMS

FIGURE 1: RECORD

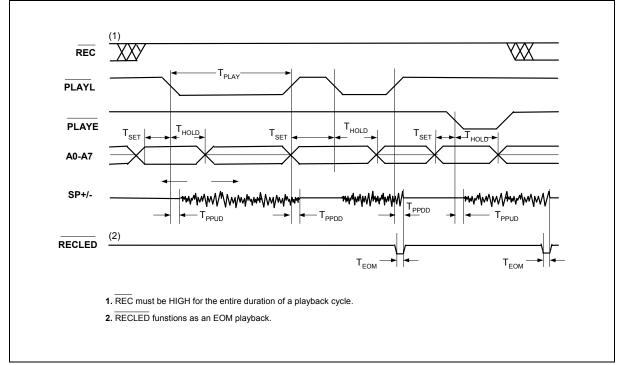


FIGURE 2: PLAYBACK

8. ABSOLUTE MAXIMUM RATINGS²

CONDITIONS	VALUES
Junction temperature	150°C
Storage temperature range	-65°C to +150°C
Voltage applied to any pin	$(V_{\rm SS}$ – 0.3V) to $(V_{\rm CC}$ + 0.3V)
Voltage applied to any pin (Input current limited to ± 20 mA)	$(V_{\rm SS}$ – 1.0V) to $(V_{\rm CC}$ + 1.0V)
Lead temperature (Soldering – 10sec)	300°C
V _{CC} – V _{SS}	-0.3V to +7.0V

TABLE 4: ABSOLUTE MAXIMUM RATINGS (PACKAGED PARTS)

TABLE 5: ABSOLUTE MAXIMUM RATINGS (DIE)

CONDITIONS	VALUES
Junction temperature	150°C
Storage temperature range	-65°C to +150°C
Voltage applied to any pad	$(V_{\rm SS}{-}0.3V)$ to $(V_{\rm CC}{+}0.3V)$
Voltage applied to any pad (Input current limited to ± 20 mA)	$(V_{SS} - 1.0V)$ to $(V_{CC} + 1.0V)$
Lead Temperature (soldering 10 seconds)	330° C
V _{CC} – V _{SS}	-0.3V to +7.0V

² Stresses above those listed may cause permanent damage to the device. Exposure to the absolute maximum ratings may affect device reliability and performance. Functional operation is not implied at these conditions.

8.1 OPERATING CONDITIONS

CONDITIONS	VALUES	
Commercial operating temperature range (Case temperature)	0°C to +70°C	
Industrial operating temperature (Case temperature)	-40°C to +85°C	
Supply voltage (V _{CC}) ^[1]	+4.5V to +5.5V	
Ground voltage (V _{SS}) ^[2]	0V	

TABLE 6: OPERATING CONDITIONS (PACKAGED PARTS)

TABLE 7: OPERATING CONDITIONS (DIE)

CONDITIONS	VALUES
Commercial operating temperature range	0°C to +50°C
Supply voltage (V _{CC}) ^[1]	+4.5V to +6.5V
Ground voltage (V _{SS}) ^[2]	0V

9. ELECTRICAL CHARACTERISTICS

9.1. PARAMETERS FOR PACKAGED PARTS

PARAMETERS	SYMBOLS	MIN ^[2]	TYP ^[1]	MAX ^[2]	UNITS	CONDITIONS				
Input Low Voltage	V _{IL}			0.8	V					
Input High Voltage	V _{IH}	2.4			V					
Output Low Voltage	V _{OL}			0.4	V	I _{OL} = 4.0 mA				
Output High Voltage	V _{OH}	2.4			V	I _{он} = -1.6 mA				
V _{CC} Current (Operating)	I _{cc}		15	30	mA	V _{CC} = 5.5V ^[3] , R _{EXT} = ∞				
V _{CC} Current (Standby)	I _{SB}		0.5	10	μA	[3] [4]				
Input Leakage Current	IL			<u>+</u> 1	μA					
Input Current HIGH w/Pull Down	I _{ILPD}			130	μA	Force V _{CC} ^[5]				
Output Load Impedance	R _{EXT}	16			Ω	Speaker Load				
Preamp IN Input Resistance	R _{MIC}	4	9	17	KΩ	Pins 17, 18				
ANA IN Input Resistance	R _{ANA IN}	2.5	3	5	KΩ					
Preamp Gain 1	A _{PRE1}	20	23	26	dB	AGC = 0.0V				
Preamp Gain 2	A _{PRE2}		-45	-15	dB	AGC = 2.5V				
ANA IN to SP+/- Gain	A _{ARP}	20	22	25	dB					
AGC Output Resistance	R _{AGC}	2.5	5	9.5	KΩ					
Preamp Out Source	I _{PREH}		-2		mA	@ V _{OUT} = 1.0V				
Preamp In Sink	I _{PREL}		0.5		mA	@ V _{OUT} = 2.0V				

TABLE 8: DC PARAMETERS

[1] Typical values @ $T_A = 25^{\circ}$ and 5.0V.

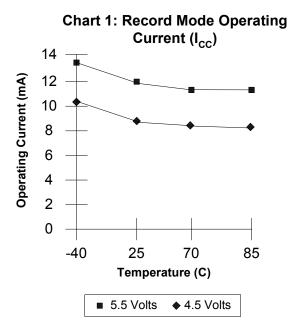
[2] All Min/Max limits are guaranteed by Winbond via electronical testing or characterization. Not all specifications are 100 percent tested.

- [3] V_{CCA} and V_{CCD} connected together.
- [4] $\overrightarrow{\text{REC}}$, $\overrightarrow{\text{PLAYL}}$, and $\overrightarrow{\text{PLAYE}}$ must be at V_{CCD}.

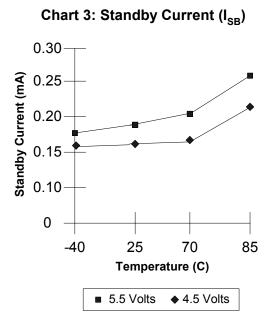
[5] XCLK pin .

CHARACTERISTICS	SYMBOLS	MIN ^[2]	TYP ^[1]	MAX ^[2]	UNITS	CONDITIONS				
Sampling Frequency	Fs			8.0						
ISD1416				6.4	kHz	[5]				
ISD1420					kHz	[5]				
Filter Pass Band	F _{CF}									
ISD1416			3.3		kHz	3 dB Roll-Off Point ^{[3][6]}				
ISD1420			2.6		kHz	3 dB Roll-Off Point ^{[3][6]}				
Record Duration	T _{REC}									
ISD1416		16			sec					
ISD1420		20			sec					
Playback Duration	T _{PLAY}									
ISD1416		16			sec	[5]				
ISD1420		20			sec	[5]				
RECLED ON Delay	T _{LED1}		5		msec					
RECLED OFF Delay	T _{LED2}	30	38.9	95	msec					
ISD1416		40	48.6	110	msec					
ISD1420										
Address Setup Time	T _{SET}	300			nsec					
Address Hold Time	T _{HOLD}	0			nsec					
Record Power-Up Delay	T _{RPUD}									
ISD1416			26		msec					
ISD1420			32		msec					
Record Power-Down Delay	T _{RPDD}									
ISD1416			26		msec					
ISD1420			32		msec					
Play Power-Up Delay	T _{PPUD}									
ISD1416			26		msec					
ISD1420			32		msec					
Play Power-Down Delay	T _{PPDD}		6.5							
ISD1416			8.1		msec					
ISD1420					msec					

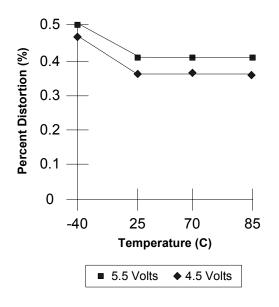
TABLE 9: AC PARAMETERS



CHARACTERISTICS	SYMBOLS	MIN ^[2]	TYP ^[1]	MAX ^[2]	UNITS	CONDITIONS
EOM Pulse Width	T _{EOM}					
ISD1416			12.5		msec	
ISD1420			15.625		msec	
Total Harmonic Distortion	THD		1	3	%	@ 1 kHz
Speaker Output Power	P _{OUT}		12.2		mW	R _{EXT} = 16 Ω
Voltage Across Speaker Pins	V _{OUT}		1.25	2.5	V р-р	R _{EXT} = 600 Ω
MIC Input Voltage	V _{IN1}			20	mV	Peak-to-Peak ^[5]
ANA IN Input Voltage	V _{IN2}			50	mV	Peak-to-Peak


Notes:

- [1] Typical values @ $T_A = 25^\circ$ and 5.0V.
- [2] All Min/Max limits are guaranteed by Winbond via electronical testing or characterization. Not all specifications are 100 percent tested.
- [3] Low-frequency cutoff depends upon the value of external capacitors (see Pin Descriptions)
- [4] With 5.1 K Ω series resistor at ANA IN.
- [5] Sampling Frequency and playback duration can vary as much as ±2.25 percent over the commercial temperature and voltage rangs. It may vary as much as ±5 percent over the industrial temperature and voltage ranges. All devices will meet the maximum sampling frequency and minimum playback duration parameters. For greater stability, an external clock can be utilized (see Pin Descriptions)
- [6] Filter specification applies to the anti-aliasing filter and the smoothing filter. Typical Parameter Variation with Voltage and Temperature. This parameter is not checked during production testing and may vary due to process variations and other factors. Therefore, the customer should not rely upon this value for testing purposes.



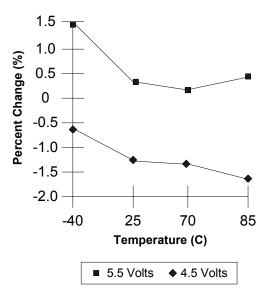


Chart 2: Total Harmonic Distortion

Chart 4: Oscillator Stability

9.2. PARAMETERS FOR DIE

PARAMETERS	SYMBOLS	MIN ^[2]	TYP ^[1]	MAX ^[2]	UNITS	CONDITIONS				
Input Low Voltage	V _{IL}			0.8	V					
Input High Voltage	V _{IH}	2.4			V					
Output Low Voltage	V _{OL}			0.4	V	I _{OL} = 4.0 mA				
Output High Voltage	V _{OH}	2.4			V	I _{OH} = -1.6 mA				
V _{CC} Current (Operating)	I _{cc}		15	30	mA	$V_{CC} = 5.5 V^{[3]},$ $R_{EXT} = \infty$				
V _{CC} Current (Standby)	I _{SB}		0.5	10	μA	[3] [4]				
Input Leakage Current	I _{IL}			<u>+</u> 1	μA					
Input Current HIGH w/Pull Down	I _{ILPD}			130	μA	Force V _{CC} ^[5]				
Output Load Impedance	R _{EXT}	16			Ω	Speaker Load				
Preamp IN Input Resistance	R _{MIC}	4	9	17	KΩ	Pads 17,18				
ANA IN Input Resistance	R _{ANA IN}	2.5	3	5	KΩ					
Preamp Gain 1	A _{PRE1}	20	23	26	dB	AGC = 0.0V				
Preamp Gain 2	A _{PRE2}		-45	-15	dB	AGC = 2.5V				
ANA IN to SP+/- Gain	A _{ARP}	20	22	25	dB					
AGC Output Resistance	R _{AGC}	2.5	5	9.5	KΩ					
Preamp Out Source	I _{PREH}		-2		mA	@ V _{OUT} = 1.0V				
Preamp In Sink	I _{PREL}		0.5		mA	@ V _{OUT} = 2.0V				

TABLE 10: DC PARAMETERS

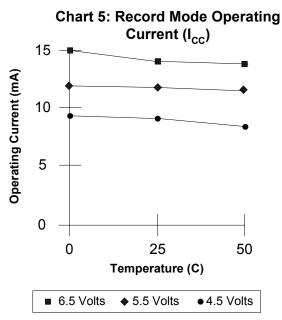
[1] Typical values @ $T_A = 25^\circ$ and 5.0V.

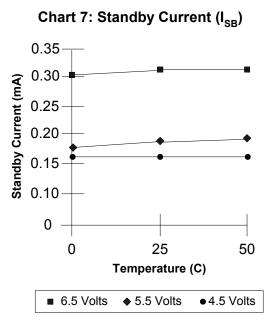
- [2] All Min/Max limits are guaranteed by Winbond via electronical testing or characterization. Not all specifications are 100 percent tested.
- [3] V_{CCA} and V_{CCD} connected together.
- [4] REC , PLAYL , and PLAYE must be at $V_{\mbox{\tiny CCD}}.$

[5] XCLK pin.

CHARACTERISTICS	SYMBOLS	MIN ^[2]	TYP ^[1]	MAX ^[2]	UNITS	CONDITIONS				
Sampling Frequency	Fs									
ISD1416			8.0		kHz	[5]				
ISD1420			6.4		kHz	[5]				
Filter Pass Band	F _{CF}									
ISD1416			3.3		kHz	3 dB Roll-Off Point ^{[3][6]}				
ISD1420			2.6		kHz	3 dB Roll-Off Point ^{[3][6]}				
Record Duration	T _{REC}									
ISD1416		16			sec					
ISD1420		20			sec					
Playback Duration	T _{PLAY}									
ISD1416		16			sec					
ISD1420		20			sec					
RECLED ON Delay	T _{LED1}		5		msec					
RECLED OFF Delay	T _{LED2}									
ISD1416		30	38.9	95	msec					
ISD1420		40	48.6	110	msec					
Address Setup Time	T _{SET}	300			nsec					
Address Hold Time	T _{HOLD}	0			nsec					
Power-Up Delay	T _{RPUD}									
ISD1416			26		msec					
ISD1420			32		msec					
PD Pulse Width (Record)	T _{RPUD}									
ISD1416			26		msec					
ISD1420			32		msec					
PD Pulse Width (Play)	T _{PPUD}									
ISD1416			6.5		msec					
ISD1420			8.1		msec					
Play Power-Down Delay	T _{PPDD}									
ISD1416			6.5		msec					
ISD1420			8.1		msec					

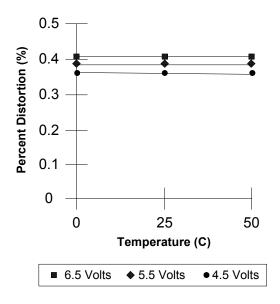
TABLE 11: AC PARAMETERS




CHARACTERISTICS	SYMBOLS	MIN ^[2]	TYP ^[1]	MAX ^[2]	UNITS	CONDITIONS
EOM Pulse Width	T _{EOM}					
ISD1416			12.5		msec	
ISD1420			15.625		msec	
Total Harmonic Distortion	THD		1	3	%	@ 1 kHz
Speaker Output Power	P _{OUT}		12.2		mW	R _{EXT} = 16 Ω ^[4]
Voltage Across Speaker Pins	V _{OUT}		1.25	2.5	V р-р	R _{EXT} = 600 Ω
MIC Input Voltage	V _{IN1}			20	mV	Peak-to-Peak ^[4]
ANA IN Input Voltage	V _{IN2}			50	mV	Peak-to-Peak

Notes:

- [1] Typical values @ $T_A = 25^\circ$ and 5.0V.
- [2] All Min/Max limits are guaranteed by Winbond via electronical testing or characterization. Not all specifications are 100 percent tested.
- [3] Low-frequency cutoff depends upon the value of external capacitors (see Pin Descriptions)
- [4] With 5.1 K Ω series resistor at ANA IN.
- [5] Sampling Frequency and playback duration can vary as much as ±2.25 percent over the commercial temperature and voltage rangs. It may vary as much as ±5 percent over the industrial temperature and voltage ranges. All devices will meet the maximum sampling frequency and minimum playback duration parameters. For greater stability, an external clock can be utilized (see Pin Descriptions)
- [6] Filter specification applies to the anti-aliasing filter and the smoothing filter. Typical Parameter Variation with Voltage and Temperature. This parameter is not checked during production testing and may vary due to process variations and other factors. Therefore, the customer should not rely upon this value for testing purposes.


inbond Electronics Corp.

9.2.1. Typical Parameter Variation with Voltage and Temperature

Chart 6: Total Harmonic Distortion

Chart 8: Oscillator Stability

10. TYPICAL APPLICATION CIRCUIT

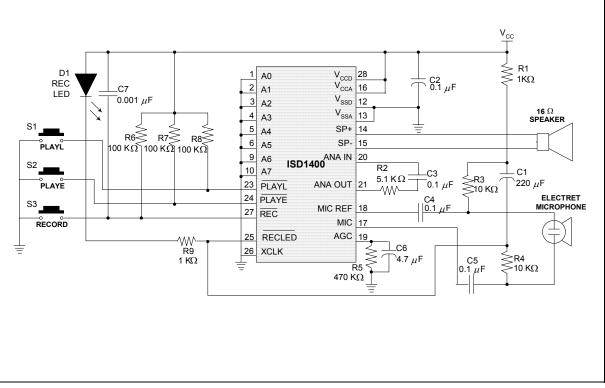


FIGURE 5: DESIGN SCHEMATIC

Functional Description Example

The following operating examples demonstrate the functionality of the ISD1400 series.

1. Record a message:

Pulling the REC signal LOW initiates a record cycle from current location. When \overrightarrow{REC} is held LOW, the recording continues. Until the memory array is filled up or when \overrightarrow{REC} is pulled HIGH, recording ceases. An EOM marker is written at the end of message. Then the device will automatically power down.

2. Edge-activated playback:

Pulling the P	LAYE	signal	LOW ini	iate	es a p	olayback c	ycle from tl	ne beg	ginnir	ng of the m	ess	age
until the entir When the EC		0				0 0						
falling edge message.	on P	LAYE	initiates	а	new	playback	operation	from	the	beginning	of	the

3. Level-activated playback:

Holding the PLAYL signal LOW initiates a playback cycle from the beginning of the message, until PLAYL is pulled HIGH or when the EOM marker is encountered, playback operation stops and the device automatically powers down.

4. Record (interrupting playback).

The REC signal takes precedence over playback operation. Holding REC LOW initiates a new record operation from current location, regardless of any current operation in progress.

5. RECLED operation.

During record, the RECLED output pin provides an active-LOW signal, which can be used to

drive an LED as a "record-in-progress" indicator. It returns to a HIGH state when the REC pin is pulled HIGH or when the recording is completed due to the memory being filled. However, during playback, this pin also pulses LOW to indicate an EOM at the end of a message.