: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Low-Voltage, Single Supply, SPST, Analog Switches

The Intersil ISL84514 and ISL84515 devices are precision, analog switches designed to operate from a single +2.4 V to +12 V supply. Targeted applications include battery powered equipment that benefit from the devices' low power consumption ($5 \mu \mathrm{~W}$), and low leakage currents (1nA). Low ron and fast switching speeds over a wide operating supply range make these switches ideal for use in industrial equipment, portable instruments, and as input signal multiplexers for new generation, low supply voltage data converters. Some of the smallest packages available alleviate board space limitations, and make Intersil's newest line of low-voltage switches an ideal solution for space constrained products.

The ISL8451x are single-pole/single-throw (SPST) switches, with the ISL84514 being normally open (NO), and the ISL84515 being normally closed (NC).

Table 1 summarizes the performance of this family. For higher performance, pin compatible versions, see the ISL43110, ISL43111 data sheet. For $\pm 5 \mathrm{~V}$ supply versions, see the ISL84516, ISL84517 data sheet.

TABLE 1. FEATURES AT A GLANCE

DESCRIPTION	ISL84514	ISL84515
Number of Switches	1	1
Configuration	NO	NC
3.3 Vron	20Ω	20Ω
3.3 V ton/torF	$60 \mathrm{~ns} / 30 \mathrm{~ns}$	60ns/30ns
5 Vron	12Ω	12Ω
5 V ton/toff	45ns/25ns	45ns/25ns
12 V ron	8Ω	8Ω
12 V ton/torf	40ns/25ns	40ns/25ns
Packages	8 Ld SOIC, 5 Ld SOT-23	

Related Literature

- Technical Brief TB363 "Guidelines for Handling and Processing Moisture Sensitive Surface Mount Devices (SMDs)"
- Application Note AN557 "Recommended Test Procedures for Analog Switches"

Features

- Drop-in replacements for MAX4514 and MAX4515
- Available in SOT-23 and SOIC packaging
- Fully specified for 5 V and 12 V supplies
- Single supply operation +2.4 V to +12 V
- ON-resistance (ron max) $20 \Omega(\mathrm{~V}+=5 \mathrm{~V}$) $10 \Omega(\mathrm{~V}+=12 \mathrm{~V})$
- ron flatness (max) . 3Ω
- Charge injection (max) . 10pC
- Low power consumption (PD) . $<5 \mu \mathrm{~W}$
- Low leakage current (max at $+85^{\circ} \mathrm{C}$) . . 20nA (off leakage) 40nA (on leakage)
- Fast switching action
- ton (max) . 150ns
- IOFF (max) . 100ns
- Minimum 2000V ESD protection per method 3015.7
- TTL, CMOS compatible
- Pb-free (RoHS compliant)

Applications

- Battery powered, handheld, and portable equipment
- Communications systems
- Radios
- Telecom infrustructure
- Test equipment
- Logic and spectrum analyzers
- Portable meters
- Medical equipment
- Ultrasound and MRI
- Electrocardiograph
- Audio and video switching
- General purpose circuits
- +3V/+5V DACs and ADCs
- Sample and hold circuits
- Digital filters
- Operational amplifier gain switching networks
- High frequency analog switching
- High-speed multiplexing
- Integrator reset circuits

Pinouts (Note 1))
ISL84514
(8 LD SOIC)
TOP VIEW

ISL84515
(8 LD SOIC) TOP VIEW

NOTE:

1. Switches Shown for Logic " 0 " Input.

ISL84514
(5 LD SOT-23) TOP VIEW

ISL84515 (5 LD SOT-23) TOP VIEW

Ordering Information

PART NUMBER (Notes 3, 4)	PART MARKING	TEMP RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE (Pb-free)	PKG. DWG. \#
ISL84514IBZ	84514 IBZ	-40 to +85	8 Ld SOIC	M8.15
ISL84514IBZ-T (Note 2)	84514 IBZ	-40 to +85	8 Ld SOIC Tape and Reel	M8.15
ISL84514IHZ-T (Note 2)	$514 Z$ (Note 5)	-40 to +85	5 Ld SOT-23, Tape and Reel	P5.064
ISL84515IBZ	84515 IBZ	-40 to +85	8 Ld SOIC	M8.15
ISL84515IBZ-T (Note 2)	84515 IBZ	-40 to +85	8 Ld SOIC Tape and Reel	M8.15
ISL84515IHZ-T (Note 2)	$515 Z$ (Note 5)	-40 to +85	5 Ld SOT-23, Tape and Reel	P5.064

NOTES:
2. Please refer to TB347 for details on reel specifications.
3. These Intersil Pb-free plastic packaged products employ special Pb -free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb -free requirements of IPC/JEDEC J STD-020.
4. For Moisture Sensitivity Level (MSL), please see product information page for ISL84514, ISL85415. For more information on MSL, please see tech brief TB363.
5. The part marking is located on the bottom of the part.

Absolute Maximum Ratings	
V+ to GND	-0.3 to 15V
Input Voltages	
IN (Note 6)	-0.3 to ((V+) + 0.3V)
NO, NC (Note 6).	-0.3 to ((V+) + 0.3V)
Output Voltages	
COM (Note 6)	-0.3 to ((V+) + 0.3V)
Continuous Current (Any Terminal)	20 mA
Peak Current NO, NC, or COM	30 mA
ESD Rating	
Human Body Model (Per MIL-STD-883	od 3015) 2.5kV
Machine Model	100V

Thermal Information

Thermal Resistance (Typical, Note 7)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
5 Ld SOT-23 Package	225
8 Ld SOIC Package	170
Maximum Junction Temperature (Plas	$150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range	$65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Pb -Free Reflow Profile.	see TB493

Operating Conditions

Temperature Range
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:
6. Signals on NO, NC, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to maximum current ratings.
7. θ_{JA} is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

Electrical Specifications Test Conditions: $\mathrm{V}+=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$ (unless otherwise specified. Boldface limits apply across the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} \text { MIN } \\ \text { (Notes 9, 11) } \end{gathered}$	TYP	$\begin{gathered} \text { MAX } \\ \text { (Notes 9, 11) } \end{gathered}$	UNITS
ANALOG SWITCH CHARACTERISTICS						
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$		Full	0	-	V+	V
ON-resistance, ron	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}=3.5 \mathrm{~V} \text {, } \\ & \text { (see Figure 4) } \end{aligned}$	+25	-	-	20	Ω
		Full	-	-	25	Ω
ron Flatness, R $\mathrm{R}_{\text {LAT(ON }}$)	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {COM }}=1 \mathrm{~V}, 2 \mathrm{~V}, 3 \mathrm{~V}$	+25	-	-	3	Ω
		Full	-	-	5	Ω
NO or NC OFF Leakage Current, $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$ or $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V} \text {, } \\ & 1 \mathrm{~V},(\text { (Note } 10) \end{aligned}$	+25	-1	0.01	1	nA
		Full	-20	-	20	nA
COM OFF Leakage Current, ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V}, 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} \text {, } \\ & 4.5 \mathrm{~V},(\underline{\text { Note 10 }}) \end{aligned}$	+25	-1	0.01	1	nA
		Full	-20	-	20	nA
COM ON Leakage Current, ICOM(ON)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} \text {, or } \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} \text {, } \\ & 4.5 \mathrm{~V} \text {, (Note 10) } \end{aligned}$	+25	-2	0.01	2	nA
		Full	-40	-	40	nA
DIGITAL INPUT CHARACTERISTICS						
Input Voltage High, $\mathrm{V}_{\text {INH }}$		Full	2.4	-	V+	V
Input Voltage Low, $\mathrm{V}_{\text {INL }}$		Full	0	-	0.8	V
Input Current, ${ }^{\text {INH, }}$, $\mathrm{I}_{\text {INL }}$	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or V_{+}	Full	-1	-	1	$\mu \mathrm{A}$
DYNAMIC CHARACTERISTICS						
Turn-ON Time, ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$, $\mathrm{V}_{\mathrm{IN}}=0$ to 3 V , (see Figure 1)	+25	-	-	150	ns
		Full	-	-	240	ns
Turn-OFF Time, toff	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$, $\mathrm{V}_{\mathrm{IN}}=0$ to 3 V , (see Figure 1)	+25	-	-	100	ns
		Full	-	-	150	ns
Charge Injection, Q	$\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{V}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=0 \Omega$, (see Figure 2)	+25	-	2	10	pC
OFF-isolation	$R_{L}=50 \Omega, C_{L}=15 p F, f=100 \mathrm{kHz}$, (see Figure 3)	+25	-	>90	-	dB
NO or NC OFF Capacitance, COFF	$f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V} \text {, }$ (see Figure 5)	+25	-	14	-	pF

Electrical Specifications Test Conditions: $\mathrm{V}_{+}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$ (unless otherwise specified. Boldface limits apply across the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (Continued)

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	MIN (Notes 9, 11)	TYP	MAX (Notes 9, 11)	UNITS
COM OFF Capacitance, CCOM(OFF)	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}, \\ & \text { (see Figure 5) } \end{aligned}$	+25	-	14	-	pF
COM ON Capacitance, $\mathrm{C}_{\text {COM }}$ (ON)	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}, \\ & \text { (see Figure 5) } \end{aligned}$	+25	-	30	-	pF
POWER SUPPLY CHARACTERISTICS						
Positive Supply Current, I+	$\mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{+}, Switch On or Off	+25	-1	0.0001	1	$\mu \mathrm{A}$
		Full	-10	-	10	$\mu \mathrm{A}$

Electrical Specifications-12V Supply Test Conditions: $\mathrm{V}_{+}=+10.8 \mathrm{~V}$ to $+13.2 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$ (unless otherwise specified. Boldface limits apply across the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} \text { MIN } \\ \text { (Notes 9, 11) } \end{gathered}$	TYP	$\begin{gathered} \text { MAX } \\ \text { (Notes 9, 11) } \\ \hline \end{gathered}$	UNITS
ANALOG SWITCH CHARACTERISTICS						
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$		Full	0	-	V+	V
ON-resistance, ron	$\mathrm{V}+=10.8 \mathrm{~V}, \mathrm{I}_{\text {COM }}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {COM }}=10 \mathrm{~V}$	+25	-	-	10	Ω
		Full	-	-	15	Ω
ron Flatness, $\mathrm{R}_{\text {FLAT(ON) }}$	$\mathrm{V}_{+}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {COM }}=3 \mathrm{~V}, 6 \mathrm{~V}, 9 \mathrm{~V}$	+25	-	-	3	Ω
		Full	-	-	5	Ω
NO or NC OFF Leakage Current, ${ }^{\prime} \mathrm{NO}$ (OFF) or $\mathrm{I}_{\mathrm{NC}}(\mathrm{OFF})$	$\begin{aligned} & \mathrm{V}_{+}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V} \text {, } \\ & 1 \mathrm{~V},(\underline{\text { (Note 10 }}) \end{aligned}$	+25	-2	-	2	nA
		Full	-50	-	50	nA
COM OFF Leakage Current, ICOM(OFF)	$\begin{aligned} & \mathrm{V}+=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=10 \mathrm{~V}, 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, \\ & 10 \mathrm{~V},(\underline{\text { Note } 10}) \end{aligned}$	+25	-2	-	2	nA
		Full	-50	-	50	nA
COM ON Leakage Current, ICOM(ON)	$\begin{aligned} & \mathrm{V}_{+}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 10 \mathrm{~V} \text {, or } \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} \text {, } \\ & 10 \mathrm{~V},(\underline{\text { Note } 10}) \end{aligned}$	+25	-4	-	4	nA
		Full	-100	-	100	nA
DIGITAL INPUT CHARACTERISTICS						
Input Voltage High, $\mathrm{V}_{\text {INH }}$		Full	5	3	V+	V
Input Voltage Low, $\mathrm{V}_{\text {INL }}$		Full	0	-	0.8	V
Input Current, ${ }_{\text {INH, }}$, ${ }_{\text {INL }}$	$\mathrm{V}_{+}=13.2 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or V_{+}	Full	-1	-	1	$\mu \mathrm{A}$
DYNAMIC CHARACTERISTICS						
Turn-ON Time, ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$, $\mathrm{V}_{\mathrm{IN}}=0$ to 5 V , (see Figure 1)	+25	-	-	150	ns
		Full	-	-	240	ns
Turn-OFF Time, toff	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$, $\mathrm{V}_{\mathrm{IN}}=0$ to 5 V , (see Figure 1)	+25	-	-	100	ns
		Full	-	-	150	ns
Charge Injection, Q	$\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{V}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=0 \Omega$, (see Figure 2)	+25	-	8	20	pC
OFF-isolation	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=15 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$, (see Figure 3)	+25	-	>90	-	dB
NO or NC OFF Capacitance, Coff	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}, \\ & \text { (see Figure 5) } \end{aligned}$	+25	-	14	-	pF
COM OFF Capacitance, Com(OFF)	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}, \\ & \text { (see Figure 5) } \end{aligned}$	+25	-	14	-	pF
COM ON Capacitance, $\mathrm{C}_{\text {COM }}(\mathrm{ON})$	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}, \\ & \text { (see Figure 5) } \end{aligned}$	+25	-	30	-	pF
POWER SUPPLY CHARACTERISTICS						
Positive Supply Current, I+	$\mathrm{V}+=13.2 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}+$, Switch On or Off	+25	-2	-	2	$\mu \mathrm{A}$
		Full	-20	-	20	$\mu \mathrm{A}$

Electrical Specifications-3.3V Supply Test Conditions: $\mathrm{V}+=+3.0 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$ (Unless Otherwise Specified. Boldface limits apply across the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PARAMETER	TEST CONDITIONS	TEMP (${ }^{\circ} \mathrm{C}$)	MIN (Notes 9, 11)	TYP	$\begin{gathered} \text { MAX } \\ \text { (Notes 9, 11) } \end{gathered}$	UNITS
ANALOG SWITCH CHARACTERISTICS						
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$		Full	0	-	V+	V
ON-resistance, ron	$\mathrm{V}+=3 \mathrm{~V}, \mathrm{I} \mathrm{COM}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {COM }}=1.5 \mathrm{~V}$	+25	-	-	50	Ω
		Full	-	-	75	Ω
ron Flatness, $\mathrm{R}_{\text {FLAT(ON) }}$	$\mathrm{I}_{\text {COM }}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {COM }}=0.5 \mathrm{~V}, 1 \mathrm{~V}, 1.5 \mathrm{~V}$	+25	-	-	5.5	Ω
		Full	-	-	7.0	Ω
NO or NC OFF Leakage Current, $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$ or $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V}, 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 3 \mathrm{~V}, \\ & \left(\begin{array}{l} \text { Note 10 } \end{array}\right) \end{aligned}$	+25	-1	0.01	1	nA
		Full	-20	-	20	nA
COM OFF Leakage Current, ICOM(OFF)	$\mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V}, 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 3 \mathrm{~V} \text {, }$ (Note 10)	+25	-1	0.01	1	nA
		Full	-20	-	20	nA
COM ON Leakage Current, ICOM(ON)	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 3 \mathrm{~V} \text {, or } \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} \text {, } \\ & 3 \mathrm{~V},(\underline{\text { Note } 10}) \end{aligned}$	+25	-2	0.01	2	nA
		Full	-40	-	40	nA
DIGITAL INPUT CHARACTERISTICS						
Input Voltage High, $\mathrm{V}_{\text {INH }}$		Full	2.4	-	V+	V
Input Voltage Low, $\mathrm{V}_{\text {INL }}$		Full	0	-	0.8	V
Input Current, $\mathrm{I}_{\text {INH, }} \mathrm{I}_{\mathrm{INL}}$	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{+}	Full	-1	-	1	$\mu \mathrm{A}$
DYNAMIC CHARACTERISTICS						
Turn-ON Time, ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{I N}=0 \text { to } 3 \mathrm{~V} \end{aligned}$	+25	-	-	150	ns
		Full	-	-	240	ns
Turn-OFF Time, toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{I N}=0 \text { to } 3 \mathrm{~V} \end{aligned}$	+25	-	-	100	ns
		Full	-	-	150	ns
Charge Injection, Q	$\mathrm{C}_{\mathrm{L}}=1.0 n \mathrm{~F}, \mathrm{~V}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=0 \Omega$	+25	-	4	10	pC
POWER SUPPLY CHARACTERISTICS						
Positive Supply Current, I+	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{+}, Switch On or Off	+25	-1	-	1	$\mu \mathrm{A}$
		Full	-10	-	10	$\mu \mathrm{A}$

NOTES:

8. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
9. The algebraic convention, whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
10. Leakage parameter is 100% tested at high temp, and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
11. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.

Test Circuits and Waveforms

Logic input waveform is inverted for switches that have the opposite logic sense.

FIGURE 1A. MEASUREMENT POINTS

C_{L} includes fixture and stray capacitance.
$V_{\text {OUT }}=V_{(N O \text { or } N C)} \frac{R_{L}}{R_{L}+r_{\text {ON }}}$
FIGURE 1B. TEST CIRCUIT
FIGURE 1. SWITCHING TIMES

FIGURE 2A. MEASUREMENT POINTS
FIGURE 2. CHARGE INJECTION

FIGURE 3. OFF-ISOLATION TEST CIRCUIT

FIGURE 4. ron TEST CIRCUIT

Test Circuits and Waveforms (Continued)

FIGURE 5. CAPACITANCE TEST CIRCUIT

Detailed Description

The ISL84514 and ISL84515 analog switches offer precise switching capability from a single 2.4 V to 12 V supply with low ON-resistance, and high-speed operation. The devices are especially well suited to portable battery powered equipment thanks to the low operating supply voltage (2.4 V), low power consumption $(5 \mu \mathrm{~W})$, low leakage currents (2 nA max), and the tiny SOT-23 packaging. High frequency applications also benefit from the wide bandwidth, and the very high off-isolation.

Supply Sequencing and Overvoltage Protection

With any CMOS device, proper power supply sequencing is required to protect the device from excessive input currents, which might permanently damage the IC. All I/O pins contain ESD protection diodes from the pin to $\mathrm{V}+$ and to GND (see Figure 6). To prevent forward biasing these diodes, V+ must be applied before any input signals, and input signal voltages must remain between V+ and GND. If these conditions cannot be guaranteed, then one of the following two protection methods should be employed.

Logic inputs can easily be protected by adding a $1 \mathrm{k} \Omega$ resistor in series with the input (see Figure 6). The resistor limits the input current below the threshold that produces permanent damage, and the sub-microamp input current produces an insignificant voltage drop during normal operation.

Adding a series resistor to the switch input defeats the purpose of using a low ron switch, so two small signal diodes can be added in series with the supply pins to provide overvoltage protection for all pins (see Figure 6). These additional diodes limit the analog signal from 1 V below V + to 1 V above GND. The low leakage current performance is unaffected by this approach, but the switch resistance may increase, especially at low supply voltages

FIGURE 6. OVERVOLTAGE PROTECTION

Power-Supply Considerations

The ISL8451x construction is typical of most CMOS analog switches, except that there are only two supply pins: V+ and GND. Unlike switches with a 13V maximum supply voltage, the ISL8451x 15V maximum supply voltage provides plenty of room for the 10% tolerance of 12 V supplies, as well as margin for overshoot and noise spikes.

The minimum recommended supply voltage is 2.4 V . It is important to note that the input signal range, switching times, and ON-resistance degrade at lower supply voltages. Refer to the "Electrical Specifications" tables beginning on page 3 and "Typical Performance Curves" beginning on page 9 for details.

V+ and GND power the internal CMOS switches and set their analog voltage limits. These supplies also power the internal logic and level shifters. The level shifters convert the input logic levels to switched V+ and GND signals to drive the analog switch gate terminals.

This family of switches cannot be operated with bipolar supplies, because the input switching point becomes negative in this configuration. For a $\pm 5 \mathrm{~V}$ single SPST switch, see the ISL84516. ISL84517 data sheet.

Logic-Level Thresholds

This switch family is TTL compatible (0.8 V and 2.4 V) over a supply range of 3 V to 11 V , and the full temperature range (see Figure 10). At 12 V the low temperature V_{IH} level is about 2.5 V . This is still below the TTL guaranteed high output minimum level of 2.8 V , but noise margin is reduced. For best results with a 12 V supply, use a logic family that provides a V_{OH} greater than 3 V .

The digital input stages draw supply current whenever the digital input voltage is not at one of the supply rails. Driving the digital input signals from GND to V+ with a fast transition time minimizes power dissipation.

High-Frequency Performance

In 50Ω systems, signal response is reasonably flat to 20 MHz , with a -3 dB bandwidth exceeding 200 MHz (see Figure 13). Figure 13 also illustrates that the frequency response is very consistent over a wide $V+$ range, and for varying analog signal levels.

An OFF switch acts like a capacitor and passes higher frequencies with less attenuation, resulting in signal feed-through from a switch's input to its output. Off-isolation
is the resistance to this feed-through. Figure 14 details the high off-isolation provided by this family. At 10 MHz , offisolation is about 50 dB in 50Ω systems, decreasing approximately 20dB per decade as frequency increases. Higher load impedances decrease off-isolation due to the voltage divider action of the switch OFF impedance and the load impedance.

Leakage Considerations

Reverse ESD protection diodes are internally connected between each analog-signal pin and both V+ and GND. One of these diodes conducts if any analog signal exceeds V+ or GND.

Virtually, all the analog leakage current comes from the ESD diodes to $\mathrm{V}+$ or GND. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either $\mathrm{V}+$ or GND and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the V_{+}and GND pins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of the same or opposite polarity. There is no connection between the analog-signal paths and $\mathrm{V}+$ or GND.

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 7. ON-RESISTANCE vs SUPPLY VOLTAGE

FIGURE 9. CHARGE INJECTION vs SWITCH VOLTAGE

FIGURE 11. TURN-ON TIME vs SUPPLY VOLTAGE

FIGURE 8. ON-RESISTANCE vs SWITCH VOLTAGE

FIGURE 10. DIGITAL SWITCHING POINT vs SUPPLY VOLTAGE

FIGURE 12. TURN-OFF TIME vs SUPPLY VOLTAGE

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 13. FREQUENCY RESPONSE

Die Characteristics

SUBSTRATE POTENTIAL (POWERED UP):
GND

FIGURE 14. OFF-ISOLATION

TRANSISTOR COUNT:

ISL84514: 40
ISL84515: 40

PROCESS:

Si Gate CMOS

For information regarding Intersil Corporation and its products, see www.intersil.com

Package Outline Drawing

M8.15
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
Rev 4, 1/12

NOTES:

1. Dimensioning and tolerancing per ANSI Y14.5M-1994.
2. Package length does not include mold flash, protrusions or gate burrs Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
3. Package width does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
4. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
5. Terminal numbers are shown for reference only.
6. The lead width as measured 0.36 mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024 inch).
7. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
8. This outline conforms to JEDEC publication MS-012-AA ISSUE C.

Package Outline Drawing

P5.064

5 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE
Rev 3, 4/11

TOP VIEW

SIDE VIEW

END VIEW

DETAIL "X"

TYPICAL RECOMMENDED LAND PATTERN

