

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

July 2003

ISL9R460P2, ISL9R460S2, ISL9R460S3S

4A, 600V Stealth™ Diode

General Description

The ISL9R460P2, ISL9R460S2 and ISL9R460S3S are Stealth™ diodes optimized for low loss performance in high frequency hard switched applications. The Stealth™ family exhibits low reverse recovery current (I_{RRM}) and exceptionally soft recovery under typical operating conditions.

This device is intended for use as a free wheeling or boost diode in power supplies and other power switching applications. The low I_{RRM} and short t_a phase reduce loss in switching transistors. The soft recovery minimizes ringing, expanding the range of conditions under which the diode may be operated without the use of additional snubber circuitry. Consider using the Stealth $^{\rm TM}$ diode with an SMPS IGBT to provide the most efficient and highest power density design at lower cost.

Formerly developmental type TA49408.

Features

•	Soft Recovery $t_b / t_a > 3$
•	Fast Recovery
•	Operating Temperature
•	Reverse Voltage 600V

Avalanche Energy Rated

Applications

- · Switch Mode Power Supplies
- · Hard Switched PFC Boost Diode
- · UPS Free Wheeling Diode
- · Motor Drive FWD

ANODE

- SMPS FWD
- · Snubber Diode

Package JEDEC TO-220AC JEDEC STYLE TO-262 JEDEC TO-263AB K CATHODE (FLANGE) CATHODE (FLANGE) CATHODE CA

Device Maximum Ratings T_C= 25°C unless otherwise noted

(FLANGE)

Symbol	Parameter	Ratings	Units
V_{RRM}	Peak Repetitive Reverse Voltage	600	V
V _{RWM}	Working Peak Reverse Voltage	600	V
V _R	DC Blocking Voltage	600	V
I _{F(AV)}	Average Rectified Forward Current (T _C = 155°C)	4	Α
I _{FRM}	Repetitive Peak Surge Current (20kHz Square Wave)	8	Α
I _{FSM}	I _{FSM} Nonrepetitive Peak Surge Current (Halfwave 1 Phase 60Hz)		Α
P _D	Power Dissipation	58	W
E _{AVL}	Avalanche Energy (0.5A, 80mH)	10	mJ
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to 175	°C
T _L	Maximum Temperature for Soldering		
T_{PKG}	Leads at 0.063in (1.6mm) from Case for 10s	300	°C
	Package Body for 10s, See Techbrief TB334	260	°C

CAUTION: Stresses above those listed in "Device Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Package Marking	and Ordering	Information
-----------------	--------------	-------------

Device Marking	Device	Package	Tape Width	Quantity
R460P2	ISL9R460P2	TO-220AC	N/A	50
R460S2	ISL9R460S2	TO-262	N/A	50
R460S3S	ISL9R460S3S	TO-263AB	N/A	50
R460S3S	ISL9R460S3ST	TO-263AB	24mm	800

Symbol	Parameter	Test	Conditions	Min	Тур	Max	Units
Off State	Characteristics						
I _R	Instantaneous Reverse Current	V _R = 600V	T _C = 25°C	-	-	100	μА
			$T_C = 125$ °C	-	-	1.0	mA
On State	Characteristics						
V _F	Instantaneous Forward Voltage	I _F = 4A	T _C = 25°C	-	2.0	2.4	V
			T _C = 125°C	-	1.6	2.0	V
	Characteristics	TV 40V L 6	.	ı	10	I	
CJ	Junction Capacitance	$V_{R} = 10V, I_{F} = 0A$		-	19	-	pF
Switchin	g Characteristics						
t _{rr}	Reverse Recovery Time	$I_F = 1A$, $d_{IF}/dt = 100A/\mu s$, $V_R = 30V$		-	17	20	ns
		$I_F = 4A$, $d_{IF}/dt =$	$100A/\mu s$, $V_R = 30V$	-	19	22	ns
t _{rr}	Reverse Recovery Time	$I_F = 4A,$ $d_{IF}/dt = 200A/\mu s,$ $V_R = 390V, T_C = 25^{\circ}C$		-	17	-	ns
I _{RRM}	Maximum Reverse Recovery Current			-	2.6	-	Α
Q_{RR}	Reverse Recovery Charge			-	22	-	nC
t _{rr}	Reverse Recovery Time	$I_F = 4A$,		-	77	-	ns
S	Softness Factor (t _b /t _a)	$d_{IF}/dt = 200A/\mu$	S,	-	4.2	-	
I_{RRM}	Maximum Reverse Recovery Current	$V_{R} = 390V,$ $T_{C} = 125^{\circ}C$		-	2.8	-	Α
Q_{RR}	Reverse Recovery Charge			-	100	-	nC
t _{rr}	Reverse Recovery Time	$I_F = 4A,$ $d_{IF}/dt = 400A/\mu s,$ $V_R = 390V,$ $T_C = 125^{\circ}C$		-	54	-	ns
S	Softness Factor (t _b /t _a)			-	3.5	-	
I _{RRM}	Maximum Reverse Recovery Current			-	4.3	-	Α
Q _{RR}	Reverse Recovery Charge				110	-	nC

Thermal Characteristics

 Q_{RR} dI_M/dt Reverse Recovery Charge Maximum di/dt during t_b

$R_{\theta JC}$	Thermal Resistance Junction to Case		-	-	2.6	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient	TO-220	-	-	62	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient	TO-262	-	-	62	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient	TO-263			62	°C/W

500

A/μs

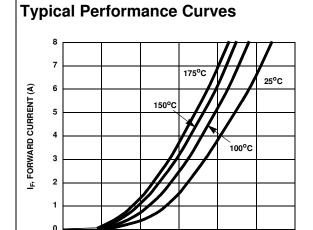


Figure 1. Forward Current vs Forward Voltage

V_F, FORWARD VOLTAGE (V)

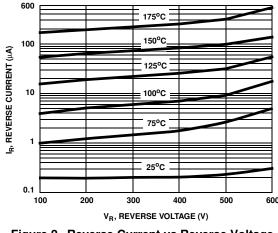


Figure 2. Reverse Current vs Reverse Voltage

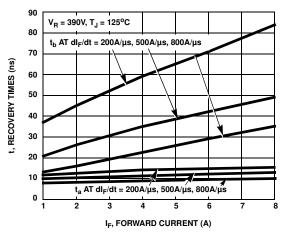


Figure 3. t_a and t_b Curves vs Forward Current

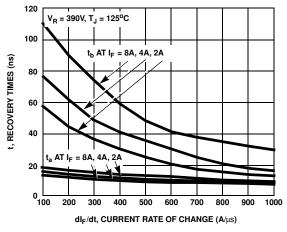


Figure 4. t_a and t_b Curves vs dl_F/dt

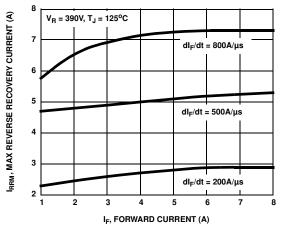


Figure 5. Maximum Reverse Recovery Current vs Forward Current

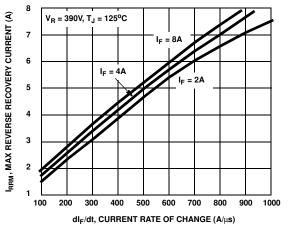
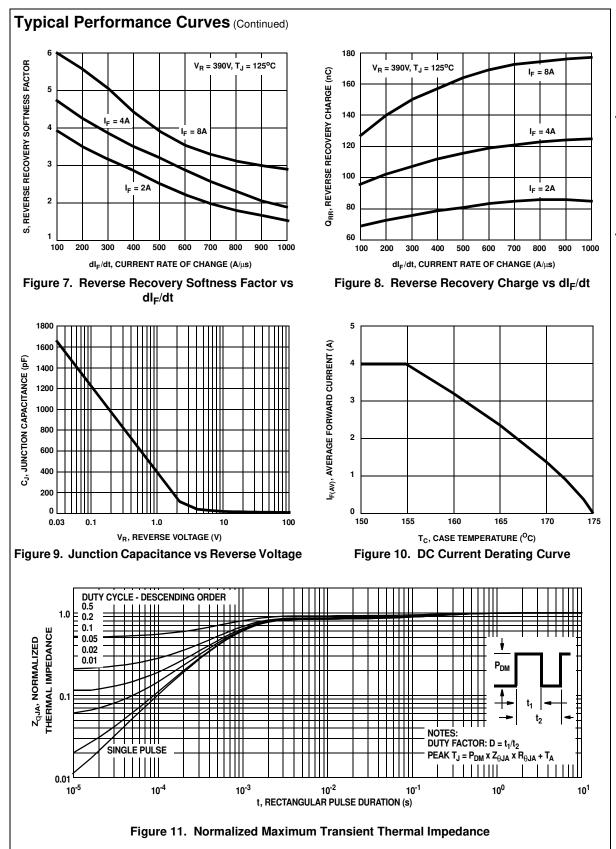
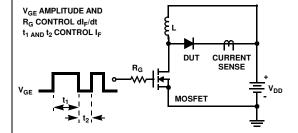




Figure 6. Maximum Reverse Recovery Current vs dI_F/dt

Test Circuit and Waveforms

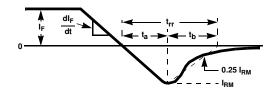


Figure 12. It_{rr} Test Circuit

Figure 13. t_{rr} Waveforms and Definitions

```
\begin{split} I &= 0.5A \\ L &= 80mH \\ R &< 0.1\Omega \\ V_{DD} &= 200V \\ E_{AVL} &= 1/2Ll^2 \left[ V_{R(AVL)}/(V_{R(AVL)} - V_{DD}) \right] \\ Q_1 &= IGBT \left( BV_{CES} > DUT \ V_{R(AVL)} \right) \\ &\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad
```

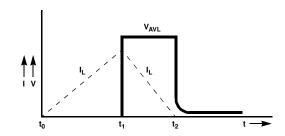


Figure 14. Avalanche Energy Test Circuit

Figure 15. Avalanche Current and Voltage Waveforms

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT™	ImpliedDisconnect™	PACMAN™	SPM™
ActiveArray™	FACT Quiet Series™	ISOPLANAR™	РОР™	Stealth™
Bottomless™	FAST [®]	LittleFET™	Power247™	SuperSOT™-3
CoolFET™	FASTr™	MicroFET™	PowerTrench [®]	SuperSOT™-6
CROSSVOLT™	FRFET™	MicroPak™	QFET [®]	SuperSOT™-8
DOME™	GlobalOptoisolator™	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	GTO™	MSX™	QT Optoelectronics™	TinyLogic [®]
E ² CMOS™	HiSeC™	MSXPro™	Quiet Series™	TruTranslation™
EnSigna™	I ² C™	OCXTM	RapidConfigure™	UHC™
Across the board. Around the world.™		OCXPro™	RapidConnect™	UltraFET [®]
The Power Franc	hise™	OPTOLOGIC [®]	SILENT SWITCHER®	VCX™
Programmable Ad	ctive Droop™	OPTOPLANAR™	SMART START™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.