

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

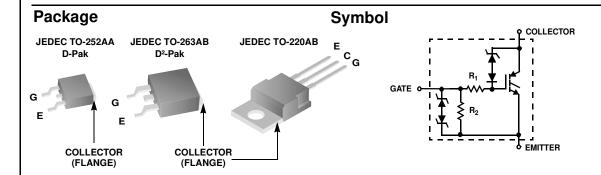
ISL9V2040D3S / ISL9V2040S3S / ISL9V2040P3

EcoSPARK⁺ 200mJ, 400V, N-Channel Ignition IGBT

General Description

The ISL9V2040D3S, ISL9V2040S3S, and ISL9V2040P3 are the next generation ignition IGBTs that offer outstanding SCIS capability in the space saving D-Pak (TO-252), as well as the industry standard D²-Pak (TO-263) and TO-220 plastic packages. This device is intended for use in automotive ignition circuits, specifically as a coil driver. Internal diodes provide voltage clamping without the need for external components.

EcoSPARK+ devices can be custom made to specific clamp voltages. Contact your nearest Fairchild sales office for more information.


Formerly Developmental Type 49444

Applications

- · Automotive Ignition Coil Driver Circuits
- · Coil- On Plug Applications

Features

- · Space saving D Pak package available
- SCIS Energy = 200mJ at T_J = 25°C
- Logic Level Gate Drive

Device Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	430	V
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24	V
E _{SCIS25}	At Starting $T_J = 25$ °C, $I_{SCIS} = 11.5A$, $L = 3.0$ mHy	200	mJ
E _{SCIS150}	At Starting $T_J = 150$ °C, $I_{SCIS} = 8.9$ A, $L = 3.0$ mHy	120	mJ
I _{C25}	Collector Current Continuous, At T _C = 25°C, See Fig 9	10	Α
I _{C110}	Collector Current Continuous, At T _C = 110°C, See Fig 9	10	Α
V _{GEM}	Gate to Emitter Voltage Continuous	±10	V
P _D	Power Dissipation Total T _C = 25°C	130	W
	Power Dissipation Derating T _C > 25°C	0.87	W/°C
TJ	Operating Junction Temperature Range	-40 to 175	°C
T _{STG}	Storage Junction Temperature Range	-40 to 175	°C
T _L	Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)	300	°C
T _{pkg}	Max Lead Temp for Soldering (Package Body for 10s)	260	°C
ESD	Electrostatic Discharge Voltage at 100pF, 1500Ω	4	kV

Device Marking Device P		Pa	ackage Reel Size		Tape Width		Qı	Quantity		
V2040D		ISL9V2040D3ST	TO)-252AA	330mm		16mm	_	2500	
)-263AB	330mm		24mm		800			
		TC)-220AB	Tube		N/A		50		
		0-252AA Tube		N/A		75				
			D-263AB Tube		N/A			50		
lectrica	al Char	acteristics T _A = 2	5°C un	less otherwise	noted	I.		<u> </u>		
Symbol		Parameter			nditions	Min	Тур	Max	Unit	
ff State	Charact	eristics								
BV _{CER}	Collector	collector to Emitter Breakdown Voltage		I_C = 2mA, V_{GE} = 0, R_G = 1K Ω , See Fig. 15 T_J = -40 to 150°C		370	400	430	V	
BV _{CES}	Collector	to Emitter Breakdown Vo	oltage	$I_C = 10$ mA, $V_{GE} = 0$, $R_G = 0$, See Fig. 15 $T_J = -40$ to 150°C		390	420	450	V	
BV _{ECS}	Emitter to	Collector Breakdown Vo	ltage	$I_{C} = -75 \text{mA}, V_{GE} = 0 \text{V},$ $T_{C} = 25 ^{\circ} \text{C}$		30	-	-	V	
BV_{GES}	Gate to E	mitter Breakdown Voltag	е	I _{GES} = ± 2mA		±12	±14	-	٧	
I _{CER}	Collector	to Emitter Leakage Curre	ent	$V_{CER} = 250V,$	$T_C = 25^{\circ}C$	-	-	25	μΑ	
				$R_G = 1K\Omega$, See Fig. 11	T _C = 150°C	-	-	1	mA	
I _{ECS}	Emitter to	Collector Leakage Curre	ent	V _{EC} = 24V, Se		-	-	1	mA	
				Fig. 11	$T_C = 150$ °C	-	-	40	mA	
R ₁	Series Gate Resistance					-	70	-	Ω	
R ₂	Gate to E	mitter Resistance				10K	-	26K	Ω	
n State (
V _{CE(SAT)}		ector to Emitter Saturation Voltage		$I_C = 6A,$ $V_{GE} = 4V$	T _C = 25°C, See Fig. 3	-	1.45	1.9	V	
V _{CE(SAT)}	Collector	llector to Emitter Saturation Voltage		$I_C = 10A,$ $V_{GE} = 4.5V$	T _C = 150°C See Fig. 4	-	1.95	2.3	V	
ynamic	Charact	eristics								
$Q_{G(ON)}$	Gate Cha			$I_C = 10A$, V_{CE} $V_{GE} = 5V$, See	e Fig. 14	-	12	-	nC	
V _{GE(TH)}	Gate to E	Emitter Threshold Voltage	;	$I_{C} = 1.0 \text{mA},$		1.3	-	2.2	V	
				V _{CE} = V _{GE} , See Fig. 10	T _C = 150°C	0.75	-	1.8	V	
V_{GEP}	Gate to E	Emitter Plateau Voltage		$I_C = 10A, V_{CE}$	= 12V	-	3.4	-	V	
witching		teristics					_			
t _{d(ON)R}	Current 7	Turn-On Delay Time-Resi	stive	$V_{CE} = 14V, R_L$		-	0.61	-	μs	
t _{riseR}		Rise Time-Resistive		$V_{GE} = 5V$, $R_G = 1K\Omega$ $T_J = 25$ °C		-	2.17	-	μѕ	
$t_{d(OFF)L}$		Turn-Off Delay Time-Indu	ctive	$V_{CE} = 300V, L$		-	3.64	-	μs	
t _{fL}		Fall Time-Inductive		$V_{GE} = 5V$, $R_G = 1K\Omega$ $T_J = 25$ °C, See Fig. 12		-	2.36	-	μs	
SCIS	Self Clan	nped Inductive Switching		$T_J = 25^{\circ}\text{C}, L = R_G = 1 \text{K}\Omega, V_G$ Fig. 1 & 2		-	-	200	mJ	
nermal C	Characte	eristics								
$R_{\theta JC}$	Thermal	Resistance Junction-Cas	е	TO-252, TO-2	63, TO-220	-	-	1.15	°C/\	

Typical Performance Curves

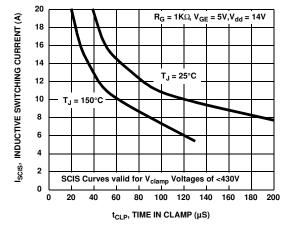


Figure 1. Self Clamped Inductive Switching Current vs Time in Clamp

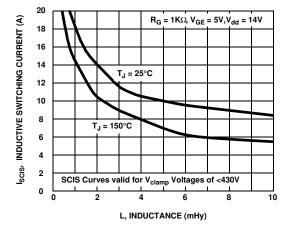


Figure 2. Self Clamped Inductive Switching Current vs Inductance

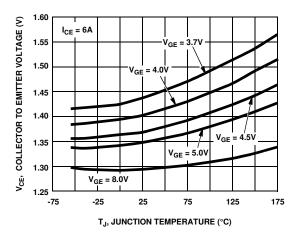


Figure 3. Collector to Emitter On-State Voltage vs Junction Temperature

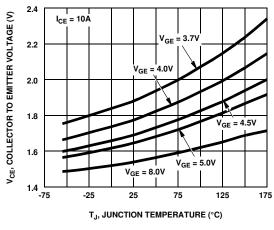


Figure 4. Collector to Emitter On-State Voltage vs Junction Temperature

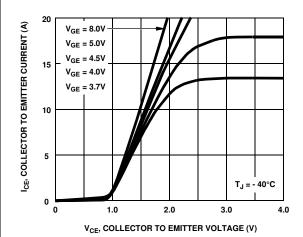


Figure 5. Collector to Emitter On-State Voltage vs Collector Current

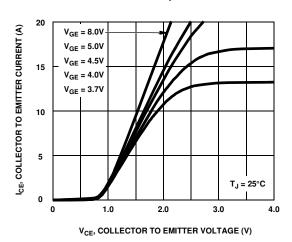
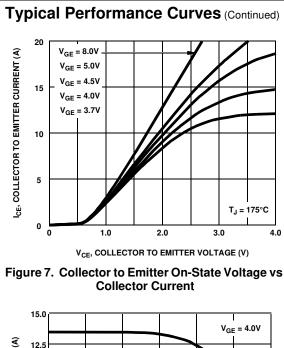



Figure 6. Collector to Emitter On-State Voltage vs Collector Current

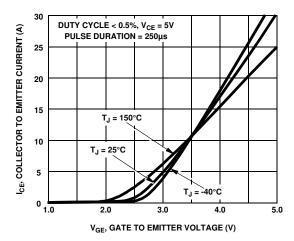
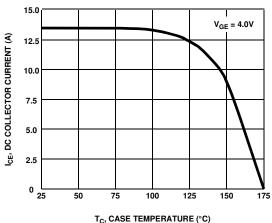



Figure 8. Transfer Characteristics

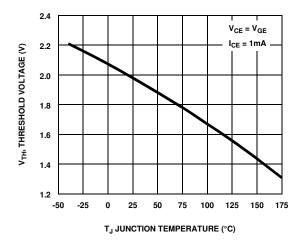
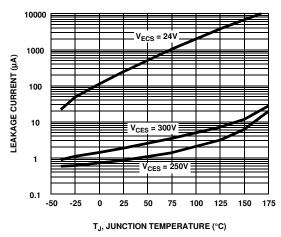



Figure 9. DC Collector Current vs Case **Temperature**

Figure 10. Threshold Voltage vs Junction **Temperature**

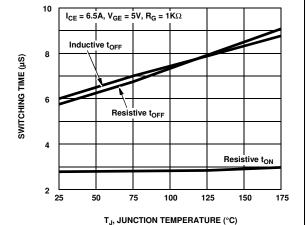


Figure 11. Leakage Current vs Junction Temperature

Figure 12. Switching Time vs Junction **Temperature**

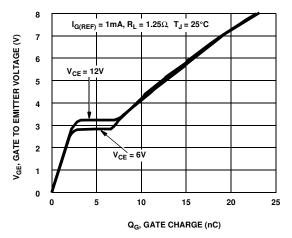


Figure 13. Capacitance vs. Collector to Emitter Voltage

Figure 14. Gate Charge

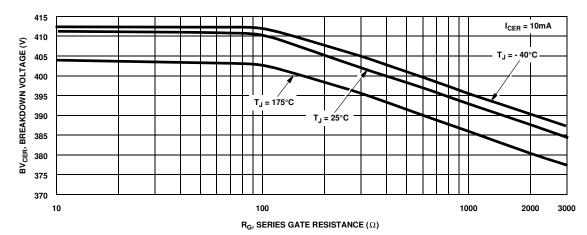


Figure 15. Breakdown Voltage vs. Series Gate Resistance

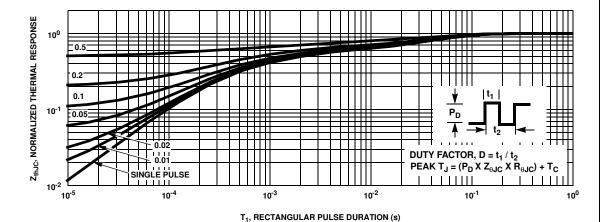
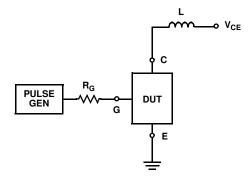



Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

Test Circuit and Waveforms

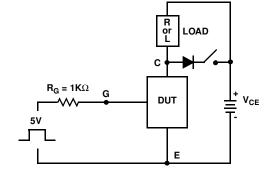
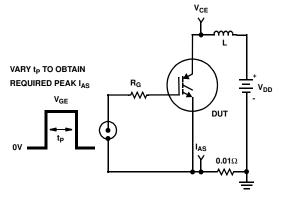



Figure 17. Inductive Switching Test Circuit

Figure 18. t_{ON} and t_{OFF} Switching Test Circuit

BV_{CES}

V_{CE}
V_{DD}

Figure 19. Unclamped Energy Test Circuit

Figure 20. Unclamped Energy Waveforms

SPICE Thermal Model JUNCTION **REV 25 April 2002** ISL9V2040D3S, ISL9V2040S3S, ISL9V2040P3 CTHERM1 th 6 1.3e -2 CTHERM2 6 5 8.8e -4 CTHERM3 5 4 8.8e -3 RTHERM1 CTHERM1 CTHERM4 4 3 3.9e -1 CTHERM5 3 2 3.6e -1 CTHERM6 2 tl 1.9e -1 6 RTHERM1 th 6 1.2e -1 RTHERM2 6 5 3.2e -1 RTHERM3 5 4 1.7e -1 RTHERM2 CTHERM2 RTHERM4 4 3 1.2e -1 RTHERM5 3 2 1.3e -1 RTHERM6 2 tl 2.5e -1 5 SABER Thermal Model SABER thermal model ISL9V2040D3S, ISL9V2040P3 RTHERM3 CTHERM3 template thermal_model th tl thermal_c th, tl ctherm.ctherm1 th 6 = 1.3e - 3ctherm.ctherm2 6 5 = 8.8e - 4ctherm.ctherm354 = 8.8e - 3RTHERM4 CTHERM4 ctherm.ctherm4 43 = 3.9e - 1ctherm.ctherm5 3 2 = 3.6e - 1ctherm.ctherm6 2 tl = 1.9e -13 rtherm.rtherm1 th 6 = 1.2e - 1rtherm.rtherm2 6 5 = 3.2e - 1rtherm.rtherm354 = 1.7e - 1RTHERM5 CTHERM5 rtherm.rtherm4 4 3 = 1.2e - 1rtherm.rtherm532 = 1.3e - 1rtherm.rtherm6 2 tl = 2.5e - 12 RTHERM6 CTHERM6 CASE

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ AX-CAP®, FRFET® BitSiC™ Global Power ResourceSM Build it Now™ GreenBridge™ CorePLUS™ Green FPS™ CorePOWER™ Green FPS™ e-Series™ Gmax™ CROSSVOLT™ GTO™ CTL™ Current Transfer Logic™ IntelliMAX™

DEUXPEED® ISOPLANAR™

Dual Cool™ Making Small Speakers Sound Louder

Foo CPAPI® and Retter™

EcoSPARK® and Better™

EfficientMax™ MegaBuck™

ESBC™ MICROCOUPLER™

MicroFET™

Fairchild®

Fairchild Semiconductor®

FACT Quiet Series™

FACT®

FAST®

MicroPak™

MicroPak™

MicroPak™

MicroPak™

MillerDrive™

MotionMax™

mWSaver®

FAST® mWSaver®
FastvCore™ OptoHiT™ OPTOLOGIC®
FETBench™ OPTOPLANAR®
FPS™

PowerTrench[®] PowerXS™

Programmable Active Droop™

QFET[®]
QS[™]
Quiet Series[™]
RapidConfigure[™]

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™

Sync-Lock™

SYSTEM

GENERAL®

TinyBoost®

TinyBock®

TinyCalc™

TinyLogic®

TINYOPTO™

TinyPOWer™

TinyPWM™

TinyPWM™

TinyPWIre™

TranSiC™

TriFault Detect™

TRUECURRENT®*

µSerDes™

SerDes"
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Deminition of Terms						
Datasheet Identification	Product Status	Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 166

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor nessure any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative