

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

June 2005

ISL9V2540S3S EcoSPARKTM N-Channel Ignition IGBT

250mJ, 400V

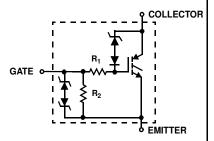
Features

- SCIS Energy = 250mJ at T_J = 25°C
- Logic Level Gate Drive

Applications

- Automotive Ignition Coil Driver Circuits
- Coil On Plug Applications

General Description


The ISL9V2540S3S is a next generation ignition IGBT that offers outstanding SCIS capability in the industry standard D²-Pak (TO-263) plastic package. This device is intended for use in automotive ignition circuits, specifically as a coil driver. Internal diodes provide voltage clamping without the need for external components.

EcoSPARK™ devices can be custom made to specific clamp voltages. Contact your nearest Fairchild sales office for more information.

Package

Symbol

Device Maximum Ratings $T_A = 25$ °C unless otherwise noted

Symbol	Parameter	Ratings	Units	
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	430	V	
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24 V		
E _{SCIS25}	At Starting $T_J = 25$ °C, $I_{SCIS} = 12.9$ A, $L = 3.0$ mHy	250	mJ	
E _{SCIS150}	At Starting $T_J = 150$ °C, $I_{SCIS} = 10$ A, $L = 3.0$ mHy	150 m.		
I _{C25}	Collector Current Continuous, At T _C = 25°C, See Fig 9	15.5	Α	
I _{C110}	Collector Current Continuous, At T _C = 110°C, See Fig 9	15.3	Α	
V _{GEM}	Gate to Emitter Voltage Continuous	±10	V	
P _D	Power Dissipation Total T _C = 25°C	166.7 V		
	Power Dissipation Derating T _C > 25°C	1.11	W/°C	
TJ	Operating Junction Temperature Range	-40 to 175	°C	
T _{STG}	Storage Junction Temperature Range	-40 to 175	°C	
TL	Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)	300	°C	
T _{pkg}	Max Lead Temp for Soldering (Package Body for 10s)	260 °C		
ESD	Electrostatic Discharge Voltage at 100pF, 1500Ω (HBM)	4	kV	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
V2540S	ISL9V2540S3ST	TO-263AB	330mm	24mm	800 units
V2540S	ISL9V2540S3S	TO-263AB	Tube	N/A	50 units

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
Off State	Characteristics						
BV _{CER}	Collector to Emitter Breakdown Voltage	I_C = 2mA, V_{GE} = 0, R_G = 1K Ω , See Fig. 15 T_J = -40 to 150°C		370	400	430	V
BV _{CES}	Collector to Emitter Breakdown Voltage	$I_C = 10 \text{mA}, V_{GE} = 0,$ $R_G = 0, \text{ See Fig. 15}$ $T_J = -40 \text{ to } 150 ^{\circ}\text{C}$		390	420	450	V
BV _{ECS}	Emitter to Collector Breakdown Voltage	$I_C = -75 \text{mA}, V_{GE} = 0 \text{V},$ $T_C = 25^{\circ}\text{C}$		30	-	-	V
BV _{GES}	Gate to Emitter Breakdown Voltage	I _{GES} = ± 2mA		±12	±14	-	V
I _{CER}	Collector to Emitter Leakage Current	$V_{CER} = 250V$,	T _C = 25°C	-	-	25	μΑ
		$R_G = 1K\Omega$, See Fig. 11	T _C = 150°C	-	-	1	mA
I _{ECS}	Emitter to Collector Leakage Current	V _{EC} = 24V, See	T _C = 25°C	-	-	1	mA
		Fig. 11 $T_C = 150$ °C	-	-	40	mA	
R ₁	Series Gate Resistance			-	70	-	Ω
R ₂	Gate to Emitter Resistance			10K	-	26K	Ω

On State Characteristics

V _{CE(SAT)}	Collector to Emitter Saturation Voltage	$I_C = 6A,$ $V_{GE} = 4V$	T _C = 25°C, See Fig. 3	-	1.37	1.8	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	$I_{C} = 10A,$ $V_{GE} = 4.5V$	T _C = 150°C See Fig. 4	1	1.77	2.2	V

$Q_{G(ON)}$	Gate Charge	$I_C = 10A$, $V_{CE} = 12$ $V_{GE} = 5V$, See Fig.		-	15.1	-	nC
V _{GE(TH)}	Gate to Emitter Threshold Voltage	$I_C = 1.0 \text{mA}, T_C$	= 25°C	1.3	-	2.2	V
		$V_{CE} = V_{GE}$, See Fig. 10	= 150°C	0.75	-	1.8	V
V_{GEP}	Gate to Emitter Plateau Voltage	I _C = 10A, V _{CE} = 12V		-	3.1	-	V
	Characteristics Current Turn-On Delay Time-Resistive	$V_{CF} = 14V, R_1 = 1\Omega$)	<u> </u>	0.61		μѕ
t _{d(ON)R}	Current Rise Time-Resistive	$V_{GE} = 14V$, $R_{L} = 152$ $V_{GE} = 5V$, $R_{G} = 1K\Omega$		-	2.17		
t _{riseR}	Current hise fillie-nesistive	$T_J = 25^{\circ}C$		_	2.17	-	μs
t _{d(OFF)L}	Current Turn-Off Delay Time-Inductive	$V_{CE} = 300V, L = 500\mu Hy,$		-	3.64	-	μs
t _{fL}	Current Fall Time-Inductive	$V_{GE} = 5V$, $R_G = 1K\Omega$ $T_J = 25$ °C, See Fig. 12		-	2.36	-	μs
SCIS	Self Clamped Inductive Switching	T_J = 25°C, L = 3.0mHy, R_G = 1K Ω , V_{GE} = 5V, See Fig. 1 & 2		-	-	250	mJ

Typical Performance Curves

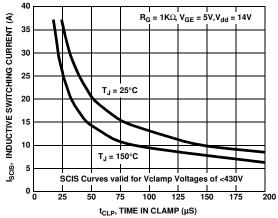


Figure 1. Self Clamped Inductive Switching Current vs Time in Clamp

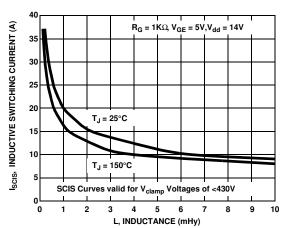


Figure 2. Self Clamped Inductive Switching Current vs Inductance

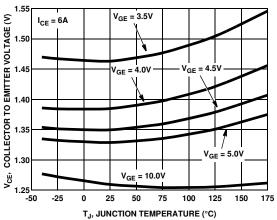


Figure 3. Collector to Emitter On-State Voltage vs Junction Temperature

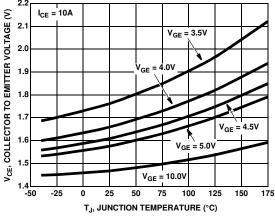


Figure 4. Collector to Emitter On-State Voltage vs Junction Temperature

Figure 5. Collector to Emitter On-State Voltage vs Collector Current

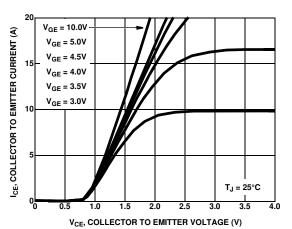


Figure 6. Collector to Emitter On-State Voltage vs Collector Current

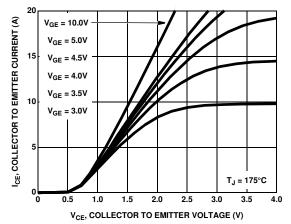


Figure 7. Collector to Emitter On-State Voltage vs Collector Current

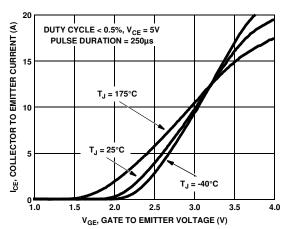


Figure 8. Transfer Characteristics

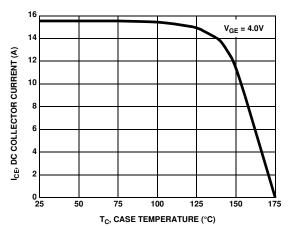


Figure 9. DC Collector Current vs Case Temperature

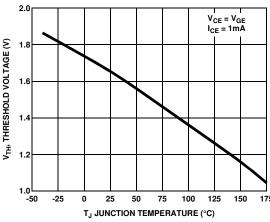


Figure 10. Threshold Voltage vs Junction Temperature

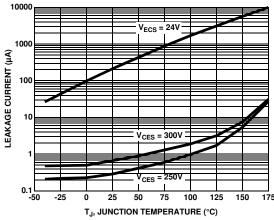


Figure 11. Leakage Current vs Junction Temperature

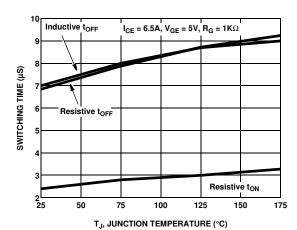


Figure 12. Switching Time vs Junction Temperature

Typical Performance Curves (Continued)

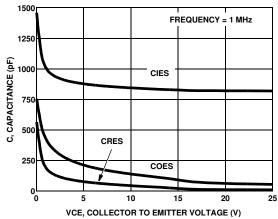


Figure 13. Capacitance vs Collector to Emitter Voltage

Figure 14. Gate Charge

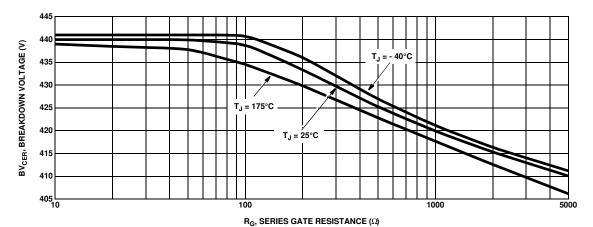
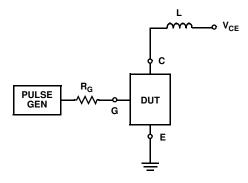



Figure 15. Breakdown Voltage vs Series Gate Resistance

Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

Test Circuit and Waveforms

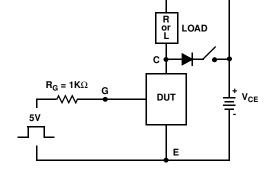


Figure 17. Inductive Switching Test Circuit

Figure 18. t_{ON} and t_{OFF} Switching Test Circuit

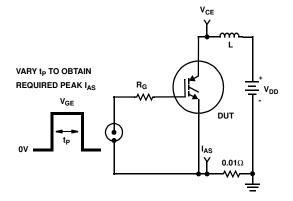


Figure 19. Unclamped Energy Test Circuit

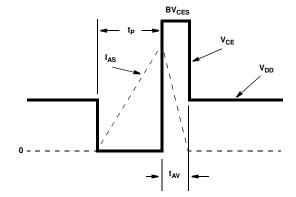
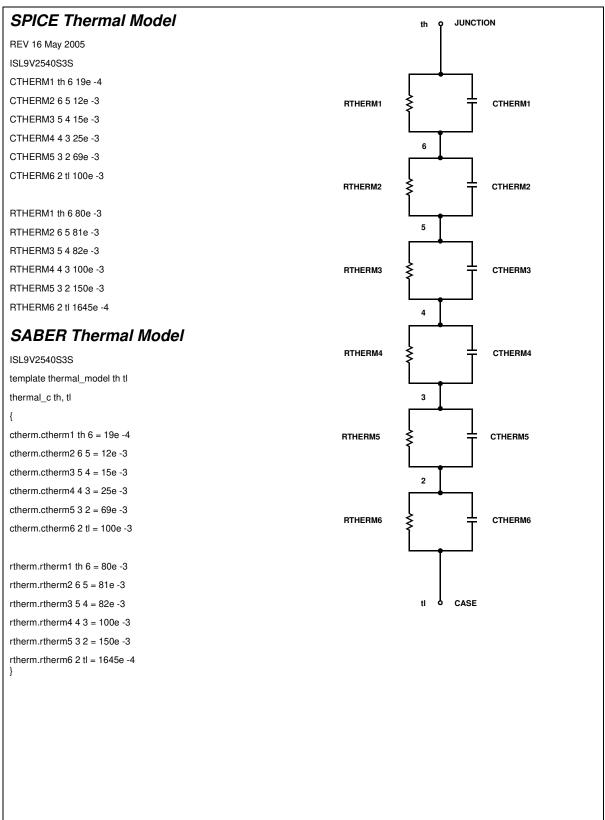



Figure 20. Unclamped Energy Waveforms

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ PowerSaver™ SuperSOT™-8 **FAST®** ISOPLANAR™ ActiveArray™ $\mathsf{PowerTrench}^{\circledR}$ SyncFETTM FASTr™ LittleFET™ Bottomless™ $\mathsf{FPS^{\mathsf{TM}}}$ MICROCOUPLER™ QFET[®] TinyLogic[®] Build it Now™ MicroFET™ QSTM TINYOPTO™ FRFET™ TruTranslation™ CoolFET™ MicroPak™ QT Optoelectronics™ GlobalOptoisolator™ $CROSSVOLT^{TM}$ MICROWIRE™ Quiet Series™ UHC™ GTO™ $\mathsf{UltraFET}^{\circledR}$ $\mathsf{DOME}^{\mathsf{TM}}$ RapidConfigure™ $\mathsf{MSX^{\mathsf{TM}}}$ HiSeC™ $\mathsf{EcoSPARK^{TM}}$ RapidConnect™ UniFET™ $MSXPro^{TM}$ I²CTM E²CMOSTM OCX^{TM} uSerDes™ VCX^{TM} i-LoTM SILENT SWITCHER® EnSigna™ OCXPro™ Wire™ ImpliedDisconnect™ $\mathsf{OPTOLOGIC}^{\circledR}$ SMART START™ FACT™ IntelliMAXTM **SPMTM** OPTOPLANAR™ FACT Quiet Series™ PACMANTM Stealth™ Across the board. Around the world.™ РОРТМ SuperFET™ The Power Franchise® Power247™ SuperSOT™-3 Programmable Active Droop™ SuperSOT™-6 PowerEdge™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I16