

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

February 2012

ISL9V5045S3ST_F085 EcoSPARK® N-Channel Ignition IGBT

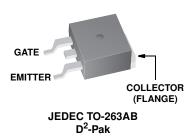
500mJ, 450V

Features

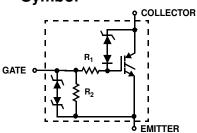
- SCIS Energy = 500mJ at T_J = 25°C
- Logic Level Gate Drive
- Qualified to AEC Q101
- RoHS Compliant

Applications

- Automotive Ignition Coil Driver Circuits
- Coil On Plug Applications


General Description

The ISL9V5045S3ST_F085 is next generation ignition IGBT that offer outstanding SCIS capability in the industry standard D2-Pak (TO-263) plastic package. This device is intended for use in automotive ignition circuits, specifically as a coil drivers. Internal diodes provide voltage clamping without the need for external components.


EcoSPARK® devices can be custom made to specific clamp voltages. Contact your nearest Fairchild sales office for more information.

Package

Symbol

Device Maximum Ratings $T_A = 25$ °C unless otherwise noted

Symbol	Parameter	Ratings	Units
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	480	V
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24	V
E _{SCIS25}	At Starting T_J = 25°C, I_{SCIS} = 39.2A, L = 650 μ Hy	500	mJ
E _{SCIS150}	At Starting $T_J = 150$ °C, $I_{SCIS} = 31.1$ A, $L = 650 \mu Hy$	315	mJ
I _{C25}	Collector Current Continuous, At T _C = 25°C, See Fig 9	51	Α
I _{C110}	Collector Current Continuous, At T _C = 110°C, See Fig 9	43	Α
V _{GEM}	Gate to Emitter Voltage Continuous	±10	V
P_{D}	Power Dissipation Total T _C = 25°C	300	W
	Power Dissipation Derating T _C > 25°C	2	W/°C
T _J	Operating Junction Temperature Range	-40 to 175	°C
T _{STG}	Storage Junction Temperature Range	-40 to 175	°C
TL	Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)	300	°C
T _{pkg}	Max Lead Temp for Soldering (Package Body for 10s)	260	°C
ESD	Electrostatic Discharge Voltage at 100pF, 1500Ω	4	kV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
V5045S	ISL9V5045S3ST_F085	TO-263AB	330mm	24mm	800

Electrical Characteristics $T_A = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
ff State	Characteristics						
BV _{CER}	Collector to Emitter Breakdown Voltage	I_C = 2mA, V_{GE} = 0, R_G = 1K Ω , See Fig. 15 T_J = -40 to 150°C		420	450	480	V
BV _{CES}	Collector to Emitter Breakdown Voltage	$I_C = 10$ mA, $V_{GE} = 0$, $R_G = 0$, See Fig. 15 $T_J = -40$ to 150°C		445	475	505	V
BV _{ECS}	Emitter to Collector Breakdown Voltage	$I_C = -75 \text{mA}, V_{GE} = 0 \text{V},$ $T_C = 25^{\circ}\text{C}$		30	-	-	V
BV _{GES}	Gate to Emitter Breakdown Voltage	I _{GES} = ± 2mA		±12	±14	-	V
I _{CER}	Collector to Emitter Leakage Current	$V_{CER} = 320V, T_{C} = 2$		-	-	25	μΑ
		$R_G = 1K\Omega$, See Fig. 11	T _C = 150°C	-	-	1	mA
I _{ECS}	Emitter to Collector Leakage Current	$V_{EC} = 24V$, See	$T_C = 25^{\circ}C$	-	-	1	mA
		Fig. 11 $T_C = 150^{\circ}C$	T _C = 150°C	-	-	40	mA
R ₁	Series Gate Resistance		•	-	100	-	Ω
R ₂	Gate to Emitter Resistance			10K	-	30K	Ω

On State Characteristics

V _{CE(SAT)}	Collector to Emitter Saturation Voltage	0 ,	$T_C = 25$ °C, See Fig. 4	-	1.25	1.60	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	$I_C = 15A,$ $V_{GE} = 4.5V$	T _C = 150°C	-	1.47	1.80	٧

Dynamic Characteristics

$Q_{G(ON)}$	Gate Charge	I _C = 10A, V _{CE} = 12V, V _{GE} = 5V, See Fig. 14		-	32	-	nC
V _{GE(TH)}	Gate to Emitter Threshold Voltage	$I_C = 1.0 \text{mA},$	$T_C = 25^{\circ}C$	1.3	-	2.2	V
		V _{CE} = V _{GE,} See Fig. 10	T _C = 150°C	0.75	-	1.8	V
V_{GEP}	Gate to Emitter Plateau Voltage	$I_C = 10A$,	V _{CE} = 12V	-	3.0	-	V

Switching Characteristics

t _{d(ON)R}	Current Turn-On Delay Time-Resistive	$V_{CE} = 14V, R_L = 1\Omega,$	-	0.7	4	μs
t _{rR}	Current Rise Time-Resistive	V_{GE} = 5V, R_G = 1K Ω T_J = 25°C, See Fig. 12	-	2.1	7	μs
t _{d(OFF)L}	Current Turn-Off Delay Time-Inductive	$V_{CE} = 300V, L = 2mH,$	-	10.8	15	μs
t _{fL}	Current Fall Time-Inductive	V_{GE} = 5V, R_G = 1K Ω T_J = 25°C, See Fig. 12	-	2.8	15	μs
SCIS	Self Clamped Inductive Switching	T_J = 25°C, L = 650 μ H, R_G = 1K Ω , V_{GE} = 5V, See Fig. 1 & 2	-	-	500	mJ

Thermal Characteristics

$R_{ hetaJC}$	Thermal Resistance Junction-Case	TO-263	-	-	0.5	°C/W

Typical Characteristics

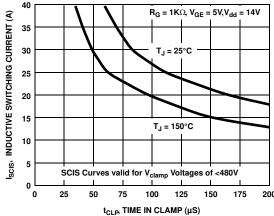


Figure 1. Self Clamped Inductive Switching
Current vs Time in Clamp

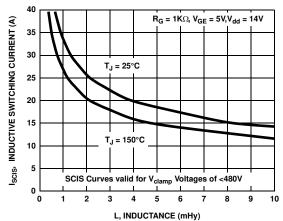


Figure 2. Self Clamped Inductive Switching Current vs Inductance

Typical Characteristics (Continued)

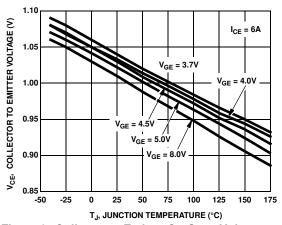


Figure 3. Collector to Emitter On-State Voltage vs Junction Temperature

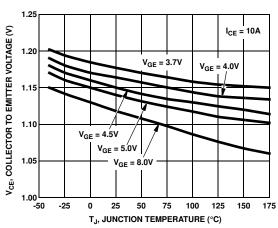


Figure 4.Collector to Emitter On-State Voltage vs Junction Temperature

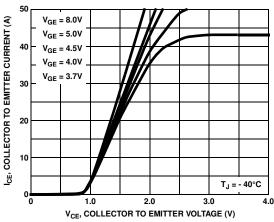


Figure 5. Collector Current vs Collector to Emitter On-State Voltage

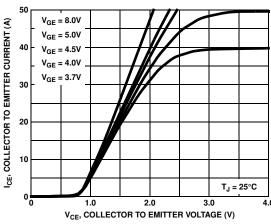


Figure 6. Collector Current vs Collector to Emitter On-State Voltage

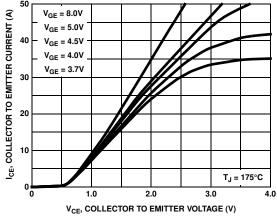


Figure 7. Collector to Emitter On-State Voltage vs Collector Current

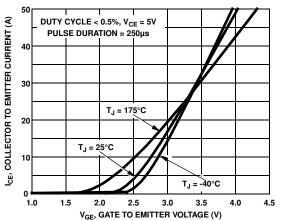
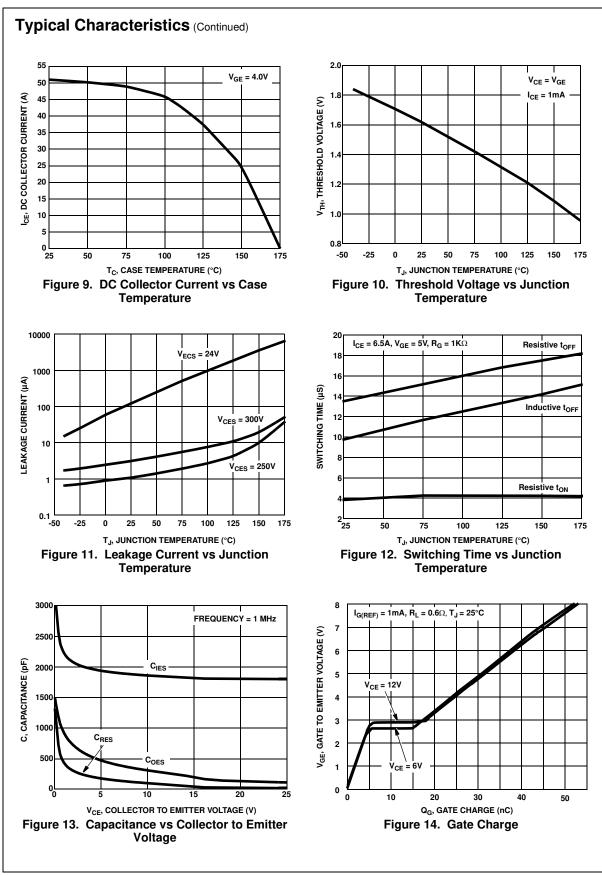



Figure 8. Transfer Characteristics

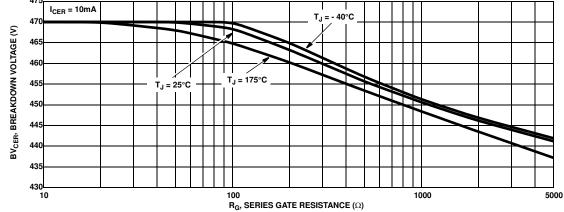


Figure 15. Breakdown Voltage vs Series Gate Resistance

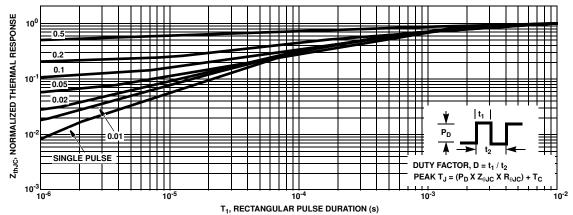


Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

Test Circuits and Waveforms

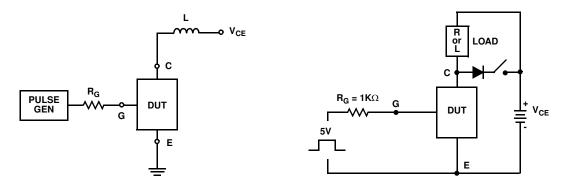
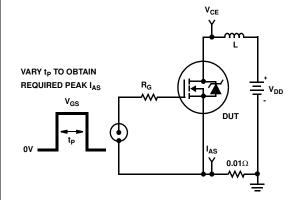



Figure 17. Inductive Switching Test Circuit

Figure 18. t_{ON} and t_{OFF} Switching Test Circuit

Test Circuits and Waveforms (Continued)

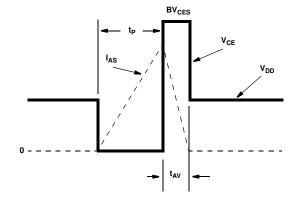


Figure 20. Energy Waveforms

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor nessure any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative