

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ISP817X, ISP827X, ISP847X ISP817, ISP827, ISP847

HIGH DENSITY MOUNTING PHOTOTRANSISTOR OPTICALLY COUPLED ISOLATORS

APPROVALS

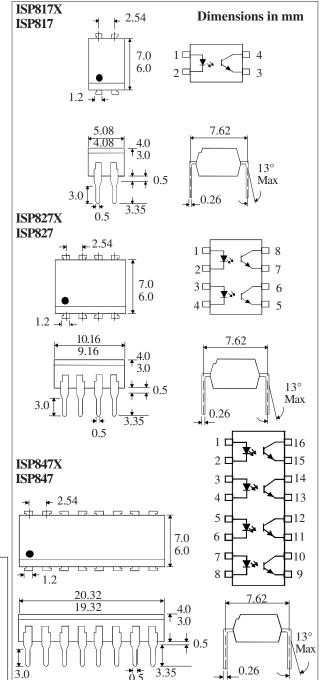
• UL recognised, File No. E91231 under Package System 'EE'

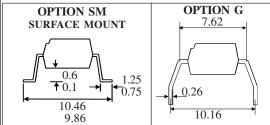
'X' SPECIFICATION APPROVALS

- VDE 0884 in 3 available lead form: -
 - STD
 - G form
 - SMD approved to CECC 00802

DESCRIPTION

The ISP817, ISP827, ISP847 series of optically coupled isolators consist of infrared light emitting diodes and NPN silicon photo transistors in space efficient dual in line plastic packages.


FEATURES


- Options:
 10mm lead spread add G after part no.

 Surface mount add SM after part no.
 Tape&reel add SMT&R after part no.
- High Current Transfer Ratio (50% min)
- High Isolation Voltage (5.3kV_{RMS},7.5kV_{PK})
- High BV_{CEO} (35Vmin)
- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- Computer terminals
- Industrial systems controllers
- Measuring instruments
- Signal transmission between systems of different potentials and impedances

ISOCOM COMPONENTS LTD

Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, Cleveland, TS25 1UD Tel: (01429) 863609 Fax: (01429) 863581

27/11/08 DB92275

$\label{eq:absolute} ABSOLUTE MAXIMUM RATINGS \\ (25^{\circ}C \ unless \ otherwise \ specified)$

Storage Temperature ————-	55°C to + 125°C
Operating Temperature	30°C to + 100°C
Lead Soldering Temperature	
(1/16 inch (1.6mm) from case for 10	secs) 260°C

INPUTDIODE

Forward Current	50mA
Reverse Voltage	6V
Power Dissipation	70mW

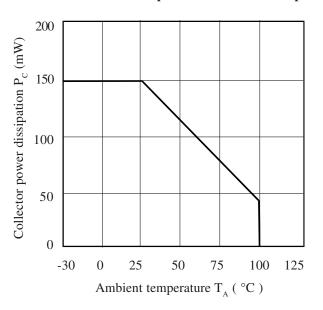
OUTPUTTRANSISTOR

Collector-emitter Voltage BV _{CEO}	35V
Emitter-collector Voltage BV _{ECO}	6V
Collector Current	50mA
Power Dissipation	150mW

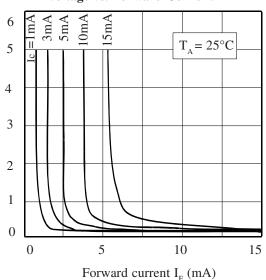
POWERDISSIPATION

Total Power Dissipation	200mW
(derate linearly 2.67mW/°C above 25°C)	

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ Unless otherwise noted)

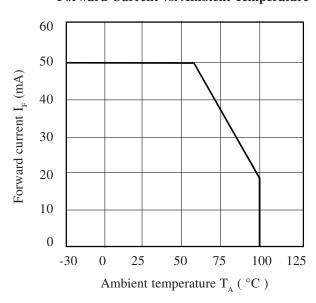

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V _F)		1.2	1.4	V	$I_F = 20 \text{mA}$
	Reverse Current (I_R)			10	μΑ	$V_R = 4V$
Output	$\begin{aligned} & \text{Collector-emitter Breakdown (BV}_{\text{CEO}}) \\ & \text{Emitter-collector Breakdown (BV}_{\text{ECO}}) \\ & \text{Collector-emitter Dark Current (I}_{\text{CEO}}) \end{aligned}$	35 6		100	V V nA	$I_{c} = 1 \text{mA}$ $I_{E} = 100 \mu \text{A}$ $V_{CE} = 20 \text{V}$
Coupled	Current Transfer Ratio (CTR) (Note 2) ISP817, ISP827, ISP847 GB BL A B C D Collector-emitter Saturation Voltage $V_{\rm CE(SAT)}$ Input to Output Isolation Voltage $V_{\rm ISO}$	50 100 200 80 130 200 300 5300 7500		600 600 600 160 260 400 600 0.2	% % % % % V V V RMS V PK	$\begin{array}{l} 5\text{mAI}_{\text{F}}, 5\text{VV}_{\text{CE}} \\ 20\text{mAI}_{\text{F}}, 1\text{mAI}_{\text{C}} \\ \end{array}$ See note 1
	Input-output Isolation Resistance $R_{\rm ISO}$ Output Rise Time tr Output Fall Time tf	5x10 ¹⁰	4 3	18 18	Ω μs μs	$V_{IO} = 500V \text{ (note 1)}$ $V_{CE} = 2V$, $I_{C} = 2\text{mA}$, $R_{L} = 100\Omega$

Note 1 Measured with input leads shorted together and output leads shorted together.

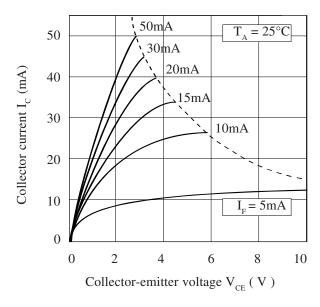

Note 2 Special Selections are available on request. Please consult the factory.

27/11/08 DB92275

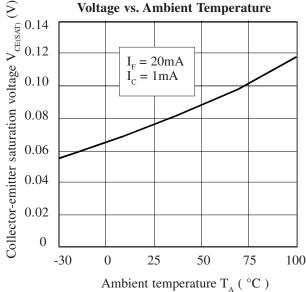
Collector Power Dissipation vs. Ambient Temperature

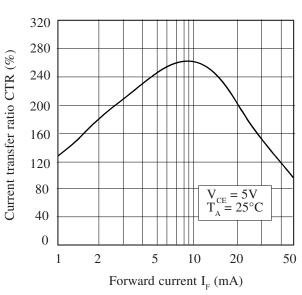


Collector-emitter Saturation Voltage vs. Forward Current



Collector-emitter saturation voltage $V_{\text{CE(SAT)}}$ (V)


Forward Current vs. Ambient Temperature


Collector Current vs. Collector-emitter Voltage

Collector-emitter Saturation Voltage vs. Ambient Temperature

Current Transfer Ratio vs. Forward Current

DB92275