: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

InvenSense	InvenSense Inc. 1745 Technology Drive, San Jose, CA 95110 U.S.A. Tel: +1 (408) 988-7339 Fax: +1 (408) 988-8104 Website: www.invensense.com	Document Number: PS-ISZ-2510A-00 Revision: 1.0 Release Date: 12/24/2013

ISZ-2510 Product Specification Revision 1.0

InvenSense

ISZ-2510 Product Specification

CONTENTS

1 DOCUMENT INFORMATION 4
1.1 Revision History 4
1.2 Purpose and Scope 5
1.3 Product Overview 5
1.4 APPLICATIONS 5
2 FEATURES 6
2.1 SENSORS 6
2.2 Digital Output 6
2.3 Data Processing 6
2.4 Clocking 6
2.5 POWER 6
2.6 Package 6
3 ELECTRICAL CHARACTERISTICS 7
3.1 Sensor Specifications 7
3.2 Electrical Specifications 8
3.3 ELECTRICAL SPECIFICATIONS, CONTINUED 9
$3.4 I^{2}$ C Timing Characterization 10
3.5 SPI Timing Characterization 11
3.6 Absolute Maximum Ratings 12
4 APPLICATIONS INFORMATION 13
4.1 Pin Out and Signal Description 13
4.2 Typical Operating Circuit 14
4.3 Bill of Materials for External Components. 14
5 FUNCTIONAL OVERVIEW 15
5.1 Block Diagram 15
5.2 OVERVIEW 15
5.3 Single-Axis MEMS Gyroscope with 16-bit ADCs and Signal Conditioning 15
$5.4 \quad I^{2} \mathrm{C}$ and SPI Serial Communications Interface 15
5.5 Internal Clock Generation 16
5.6 Sensor Data Registers 16
5.7 FIFO 16
5.8 INTERRUPTS 16
5.9 Digital-Output Temperature Sensor 16
5.10 BIAS AND LDO 16
6 DIGITAL INTERFACE 17
$6.1 \quad I^{2} \mathrm{C}$ SERIAL INTERFACE 17
7 SERIAL INTERFACE CONSIDERATIONS 22
7.1 SUPPORTED INTERFACES 22
7.2 LOGIC LEVELS. 22
8 ASSEMBLY 23
8.1 Orientation of Axes 23
8.2 PACKAGE DIMENSIONS 24
8.3 Package Marking Specification 25
InvenSense ISZ-2510 Product Specification
8.4 Tape \& Reel Specification 25
8.5 PCB DEsign Guidelines 27
9 REGISTER MAP 28
10 REGISTER DESCRIPTIONS 30
10.1 Registers 04-05, 07-08, 10-11- Gyroscope offset Temperature Compensation (TC) 30
10.2 REGISTERS 19 To 24 - GyRoscope OfFSET AdJuSTment 30
10.3 Register 25 - Sample Rate Divider 31
10.4 Register 26 - Configuration 31
10.5 REGISTER 27 - GYROSCOPE CONFIGURATION 32
10.6 Register 35 - FIFO Enable 34
10.7 REGISTER 55 - INT PIN / ByPASS Enable Configuration. 35
10.8 Register 56 - Interrupt Enable 36
10.9 Register 58 - Interrupt Status 37
10.10 Registers 65 and 66 - Temperature Measurement 38
10.11 Registers 67 to 72 - Gyroscope Measurements. 39
10.12 Register 106 - User Control 40
10.13 Register 107 - Power Management 1 41
10.14 Register 108 - Power Management 2 42
10.15 Register 114 and 115 - FIFO Count Registers 43
10.16 Register 116 - FIFO Read Write 44
10.17 Register 117 - Who Am I 45
11 ENVIRONMENTAL COMPLIANCE 46

/IME/SE/TSE	ISZ-2510 Product Specification	Document Number: PS-ISZ-2510A-00 Revision: 1.0 Release Date: $12 / 24 / 2013$

1 Document Information
 1.1 Revision History

Revision Date	Revision	Description
$12 / 24 / 2013$	1.0	Initial Release

ISZ-2510 Product Specification

1.2 Purpose and Scope

This document is a preliminary product specification, providing a description, specifications, and design related information for the single axis ISZ-2510 ${ }^{\text {TM }}$ gyroscope. The device is housed in a small $3 \times 3 \times 0.9 \mathrm{~mm}$ QFN package.

$1.3 \quad$ Product Overview

The ISZ-2510 is a single-chip, digital output, single axis MEMS gyroscope IC which features a 512 -byte FIFO. The FIFO can lower the traffic on the serial bus interface, and reduce power consumption by allowing the system processor to burst read sensor data and then go into a low-power mode.

The gyroscope includes a programmable full-scale range of $\pm 250, \pm 500, \pm 1000$, and ± 2000 degrees $/ \mathrm{sec}$, very low Rate noise at $0.01 \mathrm{dps} / \sqrt{ } \mathrm{Hz}$ and extremely low power consumption at 2.8 mA . Factory-calibrated initial sensitivity reduces production-line calibration requirements.

Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, a precision clock with 1% drift from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, an embedded temperature sensor, and programmable interrupts. The device features $I^{2} \mathrm{C}$ and SPI serial interfaces, a VDD operating range of 1.71 to 3.6 V , and a separate digital IO supply, VDDIO from 1.71 V to 3.6 V .

By leveraging its patented and volume-proven CMOS-MEMS fabrication platform, which integrates MEMS wafers with companion CMOS electronics through wafer-level bonding, InvenSense has driven the gyro package size down to a footprint and thickness of $3 \times 3 \times 0.9 \mathrm{~mm}$ (16 -pin QFN), to provide a very small yet high performance low cost package. The device provides high robustness by supporting $10,000 \mathrm{~g}$ shock reliability.

1.4 Applications

- Toys
- Tools
- Industrial

2 Features

The ISZ-2510 MEMS gyroscope includes a wide range of features:

2.1 Sensors

- Monolithic Z- Axis angular rate sensor (gyros) integrated circuit
- Digital-output temperature sensor
- External sync signal connected to the FSYNC pin supports image, video and GPS synchronization
- Factory calibrated scale factor
- High cross-axis isolation via proprietary MEMS design
- $10,000 \mathrm{~g}$ shock tolerant

2.2 Digital Output

- Fast Mode (400 kHz) $\mathrm{I}^{2} \mathrm{C}$ serial interface
- 1 MHz SPI serial interface for full read/write capability
- 20 MHz SPI to read gyro sensor \& temp sensor data.
- 16-bit ADCs for digitizing sensor outputs
- User-programmable full-scale-range of $\pm 250, \pm 500, \pm 1000$, and $\pm 2000 \%$ sec

2.3 Data Processing

- The total data set obtained by the device includes gyroscope data, temperature data, and the one bit external sync signal connected to the FSYNC pin.
- FIFO allows burst read, reduces serial bus traffic and saves power on the system processor.
- FIFO can be accessed through both $I^{2} \mathrm{C}$ and SPI interfaces.
- Programmable interrupt
- Programmable low-pass filters

2.4 Clocking

- On-chip timing generator clock frequency $\pm 1 \%$ drift over full temperature range

2.5 Power

- VDD supply voltage range of 1.71 V to 3.6 V
- Flexible VDDIO reference voltage allows for multiple $I^{2} \mathrm{C}$ and SPI interface voltage levels
- Power consumption with both axes active: 2.8 mA
- Sleep mode: $8 \mu \mathrm{~A}$
- Each axis can be individually powered down

2.6 Package

- $3 \times 3 \times 0.9 \mathrm{~mm}$ footprint and maximum thickness 16 -pin QFN plastic package
- MEMS structure hermetically sealed at wafer level
- RoHS and Green compliant

3 Electrical Characteristics

3.1 Sensor Specifications

Typical Operating Circuit of Section 4.2, VDD $=2.5 \mathrm{~V}, \mathrm{VDDIO}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	Min	Typical	Max	Unit	Notes
GYRO SENSITIVITY						
Full-Scale Range	FS_SEL=0		± 250		\%/	
	FS_SEL=1		± 500		\%	
	FS_SEL=2		± 1000		\%/	
	FS_SEL=3		± 2000		\%/s	
Sensitivity Scale Factor	FS_SEL=0		131		LSB/(\%/s)	
	FS_SEL=1		65.5		LSB/(\%/s)	
	FS_SEL=2		32.8		LSB/(\%/s)	
	FS_SEL=3		16.4		LSB/(\%/s)	
Gyro ADC Word Length			16		bits	
Sensitivity Scale Factor Tolerance	$25^{\circ} \mathrm{C}$		± 4.5		\%	
Sensitivity Scale Factor Variation Over Temperature	$-10^{\circ} \mathrm{C}$ to $+75^{\circ}$		± 4		\%	
Nonlinearity	Best fit straight line; $25^{\circ} \mathrm{C}$		± 0.2		\%	
Cross-Axis Sensitivity			± 2		\%	
GYRO ZERO-RATE OUTPUT (ZRO)						
Initial ZRO Tolerance	$25^{\circ} \mathrm{C}$		± 15		\%	
ZRO Variation Over Temperature	$-10^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$		± 15		\%	
GYRO NOISE PERFORMANCE	FS_SEL=0					
Total RMS Noise	DLPFCFG=2 (92 Hz)		0.1		\%s-rms	
Rate Noise Spectral Density	At 10 Hz		0.01		\% / / NHz	
GYRO MECHANICAL						
Mechanical Frequency		25	27	29	kHz	
GYRO START-UP TIME ZRO Settling	DLPFCFG=0, to $\pm 1 \% / \mathrm{s}$ of Final					
	From Sleep Mode to ready From Power On to ready		$\begin{aligned} & 35 \\ & 50 \end{aligned}$		ms ms	
TEMPERATURE SENSOR						
Range	Untrimmed		-10 to +75		${ }^{\circ} \mathrm{C}$	
Sensitivity			321.4		LSB/= ${ }^{\text {c }}$	
Room-Temperature Offset	$21^{\circ} \mathrm{C}$		0		LSB	
Linearity			± 0.2		${ }^{\circ} \mathrm{C}$	
TEMPERATURE RANGE						
Specification Temperature Range		-10		+75	${ }^{\circ} \mathrm{C}$	

ISZ-2510 Product Specification

3.2 Electrical Specifications

Typical Operating Circuit of Section 4.2, VDD $=2.5 \mathrm{~V}, \mathrm{VDDIO}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameters	Conditions	Min	Typical	Max	Units	Notes
VDD POWER SUPPLY						
Operating Voltage Range		1.71		3.6	V	
Power-Supply Ramp Rate	Monotonic ramp. Ramp rate is 10% to 90% of the final value	1		100	ms	
Normal Operating Current	Z Axis Active		2.8		mA	
Sleep Mode Current			8		$\mu \mathrm{A}$	
VDDIO REFERENCE VOLTAGE (must be regulated)						
Voltage Range		1.71		3.6	V	
Power-Supply Ramp Rate	Monotonic ramp. Ramp rate is 10% to 90% of the final value	0.1		100	ms	
Normal Operating Current	10pF load, 5 MHz data rate. Does not include pull up resistor current draw as that is system dependent		300		$\mu \mathrm{A}$	
START-UP TIME FOR REGISTER READ/WRITE			12		ms	
$\mathrm{I}^{2} \mathrm{C}$ ADDRESS	$\begin{aligned} & \text { ADO }=0 \\ & \text { AD0 }=1 \\ & \hline \end{aligned}$		$\begin{aligned} & 1101000 \\ & 1101001 \\ & \hline \end{aligned}$			
DIGITAL INPUTS (FSYNC, ADO, SCLK, SDI, /CS) V_{IH}, High Level Input Voltage V_{L}, Low Level Input Voltage C_{I}, Input Capacitance		0.7*VDDIO	< 5	0.3*VDDIO	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{pF} \end{gathered}$	
DIGITAL OUTPUT (INT, SDO)						
$\mathrm{V}_{\text {он, }}$, High Level Output Voltage	$\mathrm{R}_{\text {LOAD }}=1 \mathrm{M} \Omega$	0.9*VDDIO			V	
VoL1, LOW-Level Output Voltage	$\mathrm{R}_{\text {LOAD }}=1 \mathrm{M} \Omega$			0.1*VDDIO	V	
VoL.INT1, INT Low-Level Output Voltage	OPEN=1, 0.3mA sink current			0.1	V	
Output Leakage Current	OPEN=1		100		nA	
$\mathrm{t}_{\text {INT }}$, INT Pulse Width	LATCH_INT_EN=0		50		$\mu \mathrm{s}$	

Note: Power-Supply Ramp Rates are defined as the time it takes for the voltage to rise from 10% to 90% of the final value. VDD and VDDIO must be monotonic ramps.

ISZ-2510 Product Specification
Document Number: PS-ISZ-2510A-00
Revision: 1.0
Release Date: 12/24/2013

3.3 Electrical Specifications, continued

Typical Operating Circuit of Section 4.2, VDD $=2.5 \mathrm{~V}, \mathrm{VDDIO}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameters	Conditions	Min	Typical	Max	Units	Notes
$\mathrm{I}^{2} \mathrm{C}$ I/O (SCL, SDA)						
VIL, LOW Level Input Voltage			-0.5 V to $0.3^{*} \mathrm{~V}$ VDIO		v	
$\mathrm{V}_{\text {H, }}$, HIGH-Level Input Voltage			$0.7^{*} \mathrm{VDDIO}$ to VDDIO +		v	
Vhys, Hysteresis			$0.1 *$ VDDIO		v	
VoLl, LOW-Level Output Voltage	3 mA sink current		0 to 0.4		v	
IoL, LOW-Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=0.6 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 3 \\ & 6 \end{aligned}$		$\underset{m A}{m A}$	
Output Leakage Current			100		nA	
$\mathrm{tof}_{\text {of }}$ Output Fall Time from $\mathrm{V}_{\text {IHmax }}$ to $\mathrm{V}_{\text {LImax }}$	C_{b} bus capacitance in pf		$20+0.1 \mathrm{C}_{\mathrm{b}}$ to 250		ns	
$\mathrm{C}_{\text {l }}$, Capacitance for Each I/O pin			< 10		pF	
INTERNAL CLOCK SOURCE						
	Fchoice=0,1,2 SMPLRT_DIV=0		32		kHz	
Sample Rate	Fchoice=3; DLPFCFG=0 or 7		8		kHz	
Sample Rate	SMPLRT_DIV=0		8		kHz	
	Fchoice=3; DLPFCFG=1,2,3,4,5,6; SMPLRT DIV=0		1		kHz	
Clock Frequency Initial Tolerance	CLK_SEL=0, 6; 25 ${ }^{\circ} \mathrm{C}$	-2		+2	\%	
	CLK_SEL=1,2,3,4,5; $25^{\circ} \mathrm{C}$	-1		+1	\%	
Frequency Variation over Temperature	CLK_SEL=0,6		-10 to + 10		\%	
	CLK_SEL=1,2,3,4,5		± 1		\%	
PLL Settling Time	CLK_SEL=1,2,3,4,5		4		ms	

| MMQMS日MS日 | ISZ-2510 Product Specification | Document Number: PS-ISZ-2510A-00
 Revision: 1.0
 Release Date: 12/24/2013 |
| :--- | :--- | :--- | :--- |

$3.4 \quad I^{2} \mathbf{C}$ Timing Characterization

Typical Operating Circuit of Section 4.2, VDD $=2.5 \mathrm{~V}, \mathrm{VDDIO}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameters	Conditions	Min	Typical	Max	Units	Notes
$\mathrm{I}^{2} \mathrm{C}$ TIMING	$\mathrm{I}^{2} \mathrm{C}$ FAST-MODE					
$\mathrm{f}_{\text {ScL }}$, SCL Clock Frequency		0		400	kHz	
$\mathrm{t}_{\text {HD. STA }}$, (Repeated) START Condition Hold Time		0.6			$\mu \mathrm{s}$	
tlow, SCL Low Period		1.3			$\mu \mathrm{s}$	
$\mathrm{thigh,}^{\text {S }}$ SL High Period		0.6			$\mu \mathrm{s}$	
tsu.sta, Repeated START Condition Setup Time		0.6			$\mu \mathrm{s}$	
$t_{\text {HD. }}$ dat, SDA Data Hold Time		0			$\mu \mathrm{s}$	
tsu.DAT, SDA Data Setup Time		100			ns	
tr_{r} SDA and SCL Rise Time	C_{b} bus cap. from 10 to 400pF	$\begin{gathered} 20+0.1 \\ \mathrm{C}_{\mathrm{b}} \end{gathered}$		300	ns	
t_{f}, SDA and SCL Fall Time	C_{b} bus cap. from 10 to 400pF	$\begin{gathered} 20+0.1 \\ \mathrm{C}_{\mathrm{b}} \end{gathered}$		300	ns	
tsu.sto, STOP Condition Setup Time		0.6			$\mu \mathrm{s}$	
$\mathrm{t}_{\text {BuF }}$, Bus Free Time Between STOP and START Condition		1.3			$\mu \mathrm{s}$	
C_{b}, Capacitive Load for each Bus Line			< 400		pF	
tvd.dat, Data Valid Time				0.9	$\mu \mathrm{s}$	
tvd.ack, Data Valid Acknowledge Time				0.9	$\mu \mathrm{s}$	

$I^{2} C$ Bus Timing Diagram

ISZ-2510 Product Specification

3.5 SPI Timing Characterization

Typical Operating Circuit of Section 4.2, VDD $=2.5 \mathrm{~V}, \mathrm{VDDIO}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,

Parameters	Conditions	Min	Typical	Max	Units
SPI TIMING					
$\mathrm{f}_{\text {ScLk }}$, SCLK Clock Frequency				1^{1}	MHz
				20^{2}	MHz
tıow, SCLK Low Period		400			ns
thigh, $^{\text {S }}$ SCLK High Period		400			ns
tsu.cs, CS Setup Time		8			ns
thd.cs, CS Hold Time		500			ns
$\mathrm{t}_{\text {SU.SDI, }}$ SDI Setup Time		11			ns
thd.sdI, SDI Hold Time		7			ns
tvd.sdo, SDO Valid Time	$\mathrm{C}_{\text {load }}=20 \mathrm{pF}$			100	ns
$t_{\text {HD.s.so, }}$ SDO Hold Time	$\mathrm{C}_{\text {load }}=20 \mathrm{pF}$	4			ns
tilis.sdo, SDO Output Disable Time				10	ns

Notes:

1. R/W of all Registers
2. Read of Sensor Registers only

SPI Bus Timing Diagram

3.6 Absolute Maximum Ratings

Stress above those listed as "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability.

Absolute Maximum Ratings

Parameter	Rating
Supply Voltage, VDD	-0.5 V to +4.0 V
VDDIO Input Voltage Level	-0.5 V to 4.0 V
REGOUT	-0.5 V to 2 V
Input Voltage Level (AD0, FSYNC)	-0.5 V to VDD
SCL, SDA, INT (SPI enable)	-0.5 V to VDD
SCL, SDA, INT (SPI disable)	-0.5 V to VDD
Acceleration (Any Axis, unpowered)	$10,000 \mathrm{~g}$ for 0.2 ms
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ}$
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Electrostatic Discharge (ESD) Protection	$2 \mathrm{kV}(\mathrm{HBM}) ; 200 \mathrm{~V}(\mathrm{MM})$
Latch-up	JEDEC Class II (2), $125^{\circ} \mathrm{C}, \pm 100 \mathrm{~mA}$

ISZ-2510 Product Specification

4

Applications Information

4.1 Pin Out and Signal Description

Pin Number $3 \times 3 \times 0.9 \mathrm{~mm}$	Pin Name	Pin Description
1	VDDIO	Digital I/O supply voltage
2	SCL/SCLK	I 2 C serial clock (SCL); SPI serial clock (SCLK)
3	SDA/SDI	I 2 C serial data (SDA); SPI serial data input (SDI)
4	ADO / SDO	I 2 C Slave Address LSB (ADO); SPI serial data output (SDO)
5	ICS	SPI chip select ($0=$ SPI mode, $1=I^{2} \mathrm{C}$ mode)
6	RESV	Reserved. Connect to Ground.
7	INT	Interrupt digital output (totem pole or open-drain)
8	FSYNC	Frame synchronization digital input. Connect to GND if not used.
13	GND	Power supply ground
14	REGOUT	Regulator filter capacitor connection
15	RESV-G	Reserved. Connect to Ground.
16	VDD	Power supply voltage
$9,10,11,12$	NC	Not internally connected. May be used for PCB trace routing.

QFN Package (Top View)
16 -pin, $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.90 \mathrm{~mm}$ Footprint and maximum thickness

Orientation of Axes of Sensitivity and Polarity of Rotation

MMYMSAMS日	ISZ-2510 Product Specification	Document Number: PS-ISZ-2510A-00 Revision: 1.0 Release Date: 12/24/2013

4.2 Typical Operating Circuit

Typical Operating Circuit
4.3 Bill of Materials for External Components

Component	Label	Specification	Quantity
Regulator Filter Capacitor	C 1	Ceramic, $\mathrm{X} 7 \mathrm{R}, 0.1 \mu \mathrm{~F} \pm 10 \%, 2 \mathrm{~V}$	1
VDD Bypass Capacitor	C 2	Ceramic, $\mathrm{X} 7 \mathrm{R}, 0.1 \mu \mathrm{~F} \pm 10 \%, 4 \mathrm{~V}$	1
VDDIO Bypass Capacitor	C3	Ceramic, X7R, $10 \mathrm{nF} \pm 10 \%, 4 \mathrm{~V}$	1

| MMQMSAMS日 | ISZ-2510 Product Specification | Document Number: PS-ISZ-2510A-00
 Revision: 1.0
 Release Date: 12/24/2013 |
| :--- | :--- | :--- | :--- |

5 Functional Overview

5.1 Block Diagram

5.2 Overview

The ISZ-2510 is comprised of the following key blocks / functions:

- Single-axis MEMS rate gyroscope sensor with 16-bit ADCs and signal conditioning
- $I^{2} \mathrm{C}$ and SPI serial communications interfaces
- Clocking
- Sensor Data Registers
- FIFO
- Interrupts
- Digital-Output Temperature Sensor
- Bias and LDO

5.3 Single-Axis MEMS Gyroscope with 16-bit ADCs and Signal Conditioning

The ISZ-2510 consists of a single structure vibratory MEMS rate gyroscope, which detects rotation about the Z axis. When the gyro is rotated about any of the sense axes, the Coriolis Effect causes a vibration that is detected by a capacitive pick off. The resulting signal is amplified, demodulated, and filtered to produce a voltage that is proportional to the angular rate. This voltage is digitized using individual on-chip 16 -bit Analog-to-Digital Converters (ADCs) to sample each axis. The chip features a programmable full-scale range of the gyro sensors of $\pm 250, \pm 500, \pm 1000$, and ± 2000 dps. User-selectable low-pass filters enable a wide range of cut-off frequencies. The ADC sample rate can be programmed to $32 \mathrm{kHz}, 8 \mathrm{kHz}, 1 \mathrm{kHz}, 500$ $\mathrm{Hz}, 333.3 \mathrm{~Hz}, 250 \mathrm{~Hz}, 200 \mathrm{~Hz}, 166.7 \mathrm{~Hz}, 142.9 \mathrm{~Hz}$, or 125 Hz .

$5.4 \quad I^{2} \mathrm{C}$ and SPI Serial Communications Interface

The ISZ-2510 has both $I^{2} C$ and SPI serial interfaces. The device always acts as a slave when communicating to the system processor. The logic level for communications to the master is set by the voltage on the VDDIO pin. The LSB of the of the $I^{2} \mathrm{C}$ slave address is set by the ADO pin. The I ${ }^{2} \mathrm{C}$ and SPI protocols are described in more detail in Section 6.

5.5 Internal Clock Generation

The ISZ-2510 has a flexible clocking scheme, allowing for a variety of internal clock sources for the internal synchronous circuitry. This synchronous circuitry includes the signal conditioning and ADCs, various control circuits, and registers.

Allowable internal sources for generating the internal clock are:

- An internal relaxation oscillator
- PLL (gyroscope based clock)

In order for the gyroscope to perform to spec, the PLL must be selected as the clock source. When the internal 20 MHz oscillator is chosen as the clock source, the device can operate while having the gyroscopes disabled. However, this is only recommended if the user wishes to use the internal temperature sensor in this mode.

5.6 Sensor Data Registers

The sensor data registers contain the latest gyro and temperature data. They are read-only registers, and are accessed via the Serial Interface. Data from these registers may be read anytime, however, the interrupt function may be used to determine when new data is available.

5.7
 FIFO

The ISZ-2510 contains a 512 -byte FIFO register that is accessible via the both the $I^{2} \mathrm{C}$ and SPI Serial Interfaces. The FIFO configuration register determines what data goes into it, with possible choices being gyro data, temperature readings and FSYNC input. A FIFO counter keeps track of how many bytes of valid data are contained in the FIFO. The FIFO register supports burst reads. The interrupt function may be used to determine when new data is available.

$5.8 \quad$ Interrupts

Interrupt functionality is configured via the Interrupt Configuration register. Items that are configurable include the INT pin configuration, the interrupt latching and clearing method, and triggers for the interrupt. Items that can trigger an interrupt are (1) Clock generator locked to new reference oscillator (used when switching clock sources), (2) new data is available to be read (from the FIFO and Data registers), and (3) FIFO overflow. The interrupt status can be read from the Interrupt Status register.

$5.9 \quad$ Digital-Output Temperature Sensor

An on-chip temperature sensor and ADC are used to measure the device's die temperature. The readings from the ADC can be read from the FIFO or the Sensor Data registers.

$5.10 \quad$ Bias and LDO

The bias and LDO section generates the internal supply and the reference voltages and currents required by the ISZ-2510. Its two inputs are unregulated VDD of 1.71 V to 3.6 V and a VDDIO logic reference supply voltage of 1.71 V to 3.6 V . The LDO output is bypassed by a $0.1 \mu \mathrm{~F}$ capacitor at REGOUT.

ISZ-2510 Product Specification

6 Digital Interface

$6.1 \quad I^{2} C$ Serial Interface

The internal registers and memory of the ISZ-2510 can be accessed using the $I^{2} C$ interface.

Serial Interface

Pin Number	Pin Name	Pin Description
1	VDDIO	Digital I/O supply voltage.
4	ADO / SDO	$\mathrm{I}^{2} \mathrm{C}$ Slave Address LSB (ADO); SPI serial data output (SDO)
2	SCL / SCLK	$\mathrm{I}^{2} \mathrm{C}$ serial clock (SCL); SPI serial clock (SCLK)
3	SDA / SDI	$\mathrm{I}^{2} \mathrm{C}$ serial data (SDA); SPI serial data input (SDI)

6.1.1 $\quad I^{2} C$ Interface

$I^{2} \mathrm{C}$ is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the lines are open-drain and bi-directional. In a generalized $I^{2} C$ interface implementation, attached devices can be a master or a slave. The master device puts the slave address on the bus, and the slave device with the matching address acknowledges the master.

The ISZ-2510 always operates as a slave device when communicating to the system processor, which thus acts as the master. SDA and SCL lines typically need pull-up resistors to VDD. The maximum bus speed is 400 kHz .

The slave address of the device is b110100X which is 7 bits long. The LSB bit of the 7 bit address is determined by the logic level on pin ADO. This allows two ISZ-2510 devices to be connected to the same I^{2} C bus. When used in this configuration, the address of the one of the devices should be b1101000 (pin AD0 is logic low) and the address of the other should be b1101001 (pin ADO is logic high). The $\mathrm{I}^{2} \mathrm{C}$ address is stored in WHO_AM_I register.

$I^{2} \mathrm{C}$ Communications Protocol

START (S) and STOP (P) Conditions

Communication on the I ${ }^{2} \mathrm{C}$ bus starts when the master puts the START condition (S) on the bus, which is defined as a HIGH-to-LOW transition of the SDA line while SCL line is HIGH (see figure below). The bus is considered to be busy until the master puts a STOP condition (P) on the bus, which is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH (see figure below).
Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition.

START and STOP Conditions

/IVEMSEMSE	ISZ-2510 Product Specification	Document Number: PS-ISZ-2510A-00 Revision: 1.0 Release Date: 12/24/2013

Data Format / Acknowledge

$I^{2} \mathrm{C}$ data bytes are defined to be 8 bits long. There is no restriction to the number of bytes transmitted per data transfer. Each byte transferred must be followed by an acknowledge (ACK) signal. The clock for the acknowledge signal is generated by the master, while the receiver generates the actual acknowledge signal by pulling down SDA and holding it low during the HIGH portion of the acknowledge clock pulse.
If a slave is busy and is unable to transmit or receive another byte of data until some other task has been performed, it can hold SCL LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is ready, and releases the clock line (refer to the following figure).

Acknowledge on the $I^{2} C$ Bus

Communications

After beginning communications with the START condition (S), the master sends a 7 -bit slave address followed by an $8^{\text {th }}$ bit, the read/write bit. The read/write bit indicates whether the master is receiving data from or is writing to the slave device. Then, the master releases the SDA line and waits for the acknowledge signal (ACK) from the slave device. Each byte transferred must be followed by an acknowledge bit. To acknowledge, the slave device pulls the SDA line LOW and keeps it LOW for the high period of the SCL line. Data transmission is always terminated by the master with a STOP condition (P), thus freeing the communications line. However, the master can generate a repeated START condition (Sr), and address another slave without first generating a STOP condition (P). A LOW to HIGH transition on the SDA line while SCL is HIGH defines the stop condition. All SDA changes should take place when SCL is low, with the exception of start and stop conditions.

ISZ-2510 Product Specification

To write the internal ISZ-2510 registers, the master transmits the start condition (S), followed by the $I^{2} \mathrm{C}$ address and the write bit (0). At the $9^{\text {th }}$ clock cycle (when the clock is high), the device acknowledges the transfer. Then the master puts the register address (RA) on the bus. After the device acknowledges the reception of the register address, the master puts the register data onto the bus. This is followed by the ACK signal, and data transfer may be concluded by the stop condition (P). To write multiple bytes after the last ACK signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the device automatically increments the register address and loads the data to the appropriate register. The following figures show single and two-byte write sequences.

Single-Byte Write Sequence

Master	S	AD + W		RA		DATA		P
Slave			ACK		ACK		ACK	

Burst Write Sequence

Master	S	AD +W		RA		DATA		DATA		P
Slave			ACK		ACK		ACK		ACK	

To read the internal device registers, the master sends a start condition, followed by the $\mathrm{I}^{2} \mathrm{C}$ address and a write bit, and then the register address that is going to be read. Upon receiving the ACK signal from the device, the master transmits a start signal followed by the slave address and read bit. As a result, the device sends an ACK signal and the data. The communication ends with a not acknowledge (NACK) signal and a stop bit from master. The NACK condition is defined such that the SDA line remains high at the $9^{\text {th }}$ clock cycle. The following figures show single and two-byte read sequences.

Single-Byte Read Sequence

Master	S	AD+W		RA		S	AD+R			NACK	P
Slave			ACK		ACK			ACK	DATA		

Burst Read Sequence

Master	S	AD+W		RA		S	AD+R			ACK		NACK	P
Slave			ACK		ACK			ACK	DATA		DATA		

MMOMSAMS日	ISZ-2510 Product Specification	Document Number: PS-ISZ-2510A-00 Revision: 1.0 Release Date: 12/24/2013

$I^{2} \mathrm{C}$ Terms

Signal	Description
S	Start Condition: SDA goes from high to low while SCL is high
AD	Slave I ${ }^{2}$ C address
W	Write bit (0)
R	Read bit (1)
ACK	Acknowledge: SDA line is low while the SCL line is high at the $9^{\text {th }}$ clock cycle
NACK	Not-Acknowledge: SDA line stays high at the $9^{\text {th }}$ clock cycle
RA	The internal register address
DATA	Transmit or received data
P	Stop condition: SDA going from low to high while SCL is high

6.1.2 SPI interface

SPI is a 4-wire synchronous serial interface that uses two control and two data lines. The ISZ-2510 always operates as a Slave device during standard Master-Slave SPI operation. With respect to the Master, the Serial Clock output (SCLK), the Data Output (SDO) and the Data Input (SDI) are shared among the Slave devices. The Master generates an independent Chip Select (/CS) for each Slave device; /CS goes low at the start of transmission and goes back high at the end. The Serial Data Output (SDO) line, remains in a highimpedance (high-z) state when the device is not selected, so it does not interfere with any active devices.

SPI Operational Features

1. Data is delivered MSB first and LSB last
2. Data is latched on rising edge of SCLK
3. Data should be transitioned on the falling edge of SCLK
4. SCLK frequency is 1 MHz max for SPI in full read/write capability mode. When the SPI frequency is set to 20 MHz , its operation is limited to reading sensor registers only.
5. SPI read and write operations are completed in 16 or more clock cycles (two or more bytes). The first byte contains the SPI Address, and the following byte(s) contain(s) the SPI data. The first bit of the first byte contains the Read/Write bit and indicates the Read (1) or Write (0) operation. The following 7 bits contain the Register Address. In cases of multiple-byte Read/Writes, data is two or more bytes:

SPI Address format

MSB							LSB
R/W	A6	A5	A4	A3	A2	A1	A0

SPI Data format

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0

6. Supports Single or Burst Read/Writes.

/IVQПSEMSE	ISZ-2510 Product Specification	Document Number: PS-ISZ-2510A-00 Revision: 1.0 Release Date: 12/24/2013

Typical SPI Master / Slave Configuration

Each SPI slave requires its own Chip Select (/CS) line. SDO, SDI and SCLK lines are shared. Only one /CS line is active (low) at a time ensuring that only one slave is selected at a time. The /CS lines of other slaves are held high which causes their respective SDO pins to be high-Z.

IMVEMSEMSE	ISZ-2510 Product Specification	Document Number: PS-ISZ-2510A-00 Revision: 1.0 Release Date: 12/24/2013

7 Serial Interface Considerations

$7.1 \quad$ Supported Interfaces

The ISZ-2510 supports $I^{2} \mathrm{C}$ and SPI communication.

7.2 Logic Levels

The I/O logic levels are set to VDDIO. VDDIO may be set to be equal to VDD or to another voltage, such that it is between 1.71 V and 3.6 V at all times. Both $\mathrm{I}^{2} \mathrm{C}$ and SPI communication support VDDIO.

8 Assembly

This section provides general guidelines for assembling InvenSense Micro Electro-Mechanical Systems (MEMS) gyros packaged in Quad Flat No leads package (QFN) surface mount integrated circuits.

This preliminary datasheet only provides limited information with respect to ISZ-2510 Assembly. Additional information will be supplied in subsequent versions of the document.

8.1 Orientation of Axes

The diagram below shows the orientation of the axes of sensitivity and the polarity of rotation. Note the pin 1 identifier in the figure.

Orientation of Axes of Sensitivity and Polarity of Rotation

ISZ-2510 Product Specification

8.2 Package Dimensions

	DIMENSIONS IN MILLIMETERS		
SYMBOLS	MIN	NOM	MAX
A	0.85	0.90	0.95
A1	0.00	0.02	0.05
b	0.18	0.25	0.30
c	---	0.20 REF	---
D	2.90	3.00	3.10
D2	1.75	1.80	1.85
E	2.90	3.00	3.10
E2	1.75	1.80	1.85
e	---	0.50	---
$\mathbf{f (e - b)}$			
K	---	0.25 REF	---
L	0.30	0.35	0.40
R	0.08	REF.	---
R1	---	0.15	---
W	---	0.30	---
\mathbf{y}	0.00	---	0.075

MMQMS日MS日	ISZ-2510 Product Specification	Document Number: PS-ISZ-2510A-00 Revision: 1.0 Release Date: 12/24/2013

8.3 Package Marking Specification

> TOP VIEW

Part number:

Product	Top Mark
ISZ-2510	IZ10

8.4 Tape \& Reel Specification

(1) Measured from centerine of pocket to centerline of pocket.
(2) Cummulative tolerance of 10 sprocket holes is ± 0.20
(3) Measured from centerline of sprocket hole to centerline of pocket

ALL DIMENS IONS IN MILLIMETERS UNLESS OTHERWISE STATED

