

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ITS4300S-SJ-D

Smart High-Side NMOS-Power Switch

Data Sheet

Rev 1.0, 2012-09-01

Standard Power

Smart High-Side NMOS-Power Switch

ITS4300S-SJ-D

1 Overview

Features

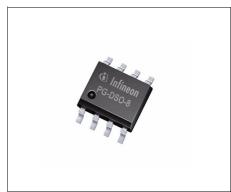
- · CMOS compatible input
- Switching all types of resistive, inductive and capacitive loads
- · Fast demagnetization of inductive loads
- Very low standby current
- Optimized Electromagnetic Compatibility (EMC)
- · Open drain diagnostic output for overtemperature and short circuit
- · Open load detection in OFF-state with external resistor
- Overload protection
- Current limitation
- · Short circuit protection
- · Thermal shutdown with restart
- Overvoltage protection (including load dump)
- Reverse battery protection with external resistor
- Loss of GND and loss of Vbb protection
- Electrostatic Discharge Protection (ESD)
- Green Product (RoHS compliant)

ITS4300S-SJ-D is not qualified and manufactured according to the requirements of Infineon Technologies with regards to automotive and/or transportation applications.

The ITS4300S-SJ-D is a protected single channel Smart High-Side NMOS-Power Switch in a PG-DSO-8 package with charge pump, CMOS compatible input and diagnostic feedback.

Product Summary

Overvoltage protection $V_{\rm SAZmin}$ = 41V Operating voltage range: 5V < $V_{\rm S}$ < 34V On-state resistance $R_{\rm DSON}$ = typ 300m Ω Nominal load current $I_{\rm LNOM}$ = 0.4A


Operating Temperature range: $T_i = -40$ °C to 125°C

Standby Current: I_{SSTB} = 26µA

Application

- · All types of resistive, inductive and capacitive loads
- Power switch for 12V and 24V DC applications with CMOS compatible control interface
- Driver for electromagnetic relays
- Power managment for high-side-switching with low current consumption in OFF-mode

Туре	Package	Marking
ITS4300S-SJ-D	PG-DSO-8	I300SD

PG-DSO-8

Block Diagram and Terms

2 Block Diagram and Terms

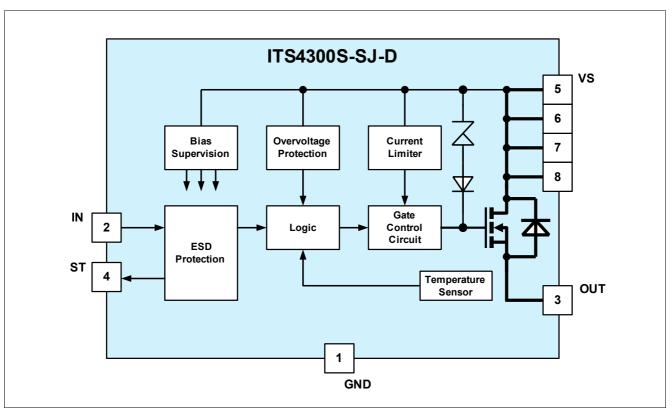


Figure 1 Block diagram

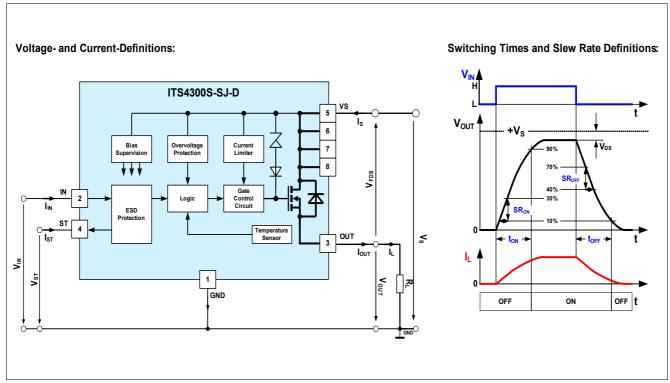


Figure 2 Terms - parameter definition

Pin Configuration

3 Pin Configuration

3.1 Pin Assignment

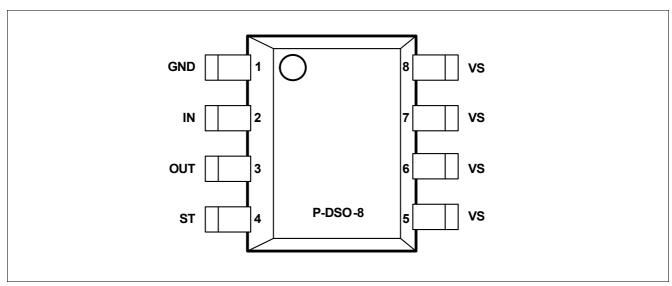


Figure 3 Pin configuration top view, PG-DSO-8

3.2 Pin Definitions and Functions

Pin	Symbol	Function
1	GND	Logic ground
2	IN	Input, controles the power switch; the powerswitch is ON when high
3	OUT	Output to the load
4	ST	Status flag; diagnosis feedback; NMOS open drain
5, 6, 7, 8	VS	Supply voltage (design the wiring for the maximum short circuit current and also for low thermal resistance)

General Product Characteristics

4 General Product Characteristics

4.1 Absolute Maximum Ratings

Table 1 Absolute maximum ratings¹⁾ at Tj = 25°C unless otherwise specified. Currents flowing into the device unless otherwise specified in chapter "Block Diagram and Terms"

Parameter	Symbol		Value	S	Unit	Note / Test Condition	Number
		Min.	Typ.	Max.			
Supply voltage VS	1		-	<u> </u>	"		
Voltage	V_{S}	_	_	40	V		4.1.1
Voltage for short circuit protection	V_{SSC}	_	_	28	V		4.1.2
Output stage OUT					•		
Output Current; (Short circuit current see electrical characteristics)	I_{OUT}	_	_	self limited	Α		4.1.3
Input IN					•		
Voltage	V_{IN}	-10	_	16	V		4.1.4
Current	I_{IN}	-5	_	5	mA		4.1.5
Status ST					•		
Current	I_{ST}	-5	_	5	mA		4.1.6
Temperatures			*	!	*		•
Junction Temperature	T_{j}	-40	_	125	°C		4.1.7
Storage Temperature	T_{stg}	-55	_	125	°C		4.1.8
Power dissipation							
Ta = 25 °C ²⁾	P_{tot}		_	1.4	W		4.1.9
Inductive load switch-off energy di	ssipation						
Tj = 125 °C; V_S =13.5V; IL= 0.3A ³⁾	E_{AS}		_	800	mJ	single pulse	4.1.10
ESD Susceptibility	•		•	<u>'</u>		•	•
ESD susceptibility (input pin)	V_{ESD}	-1	_	1	kV	HBM ⁴⁾	4.1.11
ESD susceptibility (all other pins)	V_{ESD}	-5	_	5	kV	HBM ⁴⁾	4.1.12

¹⁾ Not subject to production test, specified by design

Note: Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" the normal operating range. Protection functions are neither designed for continuous nor repetitive operation.

²⁾ Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70mm thick) copper area for Vbb connection. PCB is vertical without blown air

³⁾ Not subject to production test, specified by design

⁴⁾ ESD susceptibility HBM according to EIA/JESD 22-A 114.

General Product Characteristics

4.2 Functional Range

Table 2 Functional Range

Parameter	Symbol		Values		Unit	it Note /	Number
		Min.	Тур.	Max.		Test Condition	
Nominal Operating Voltage	V_{S}	5		34	V	$V_{\rm S}$ increasing	4.2.1

Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.

4.3 Thermal Resistance

This thermal data was generated in accordance to JEDEC JESD51 standards. More information on www.jedec.org

Table 3 Thermal Resistance¹⁾

Parameter	Symbol		Value	S	Unit	Note / Test Condition	Number
		Min.	Тур.	Max.			
Thermal Resistance - Junction to pin5	$R_{ m thj-pin5}$		34.5		K/W		4.3.1
Thermal Resistance - Junction to Ambient - 1s0p, minimal footprint	$R_{ m thJA_1s0p}$		145		K/W	2)	4.3.2
Thermal Resistance - Junction to Ambient - 1s0p, 300mm ²	R _{thJA_1s0p_300mm}		89		K/W	3)	4.3.3
Thermal Resistance - Junction to Ambient - 1s0p, 600mm ²	R _{thJA_1s0p_600mm}		78		K/W	4)	4.3.4
Thermal Resistance - Junction to Ambient - 2s2p	R _{thJA_2s2p}		85		K/W	5)	4.3.5
Thermal Resistance - Junction to Ambient with thermal vias - 2s2p	R _{thJA_2s2p}		60.4		K/W	6)	4.3.6

- 1) Not subject to production test, specified by design
- 2) Specified R_{thJA} value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board, footprint; the Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 1x 70 μ m Cu.
- 3) Specified R_{thJA} value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board, Cu, 300mm²; the Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 1x 70 μ m Cu.
- 4) Specified R_{thJA} value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board, 600mm²; the Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 1x 70 μ m Cu.
- 5) Specified R_{thJA} value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 μ m Cu, 2 x 35 μ m Cu).
- 6) Specified R_{thJA} value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board with two thermal vias; the Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70μm Cu, 2 x 35μm Cu. The diameter of the two vias are equal 0.3mm and have a plating of 25um with a copper heatsink area of 3mm x 2mm). JEDEC51-7: The two plated-through hole vias should have a solder land of no less than 1.25 mm diameter with a drill hole of no less than 0.85 mm diameter.

Data Sheet 6 Rev 1.0, 2012-09-01

Electrical Characteristics

5 Electrical Characteristics

Table 4 V_s =13.5V; T_j = -40°C to 125°C; all voltages with respect to ground. Currents flowing into the device unless otherwise specified in chapter "Block Diagram and Terms". Typical values at V_s = 13.5V. Ti = 25°C

Parameter	Symbol		Value	S	Unit	Note / Test Condition	Number
		Min.	Тур.	Max.			
Powerstage					"		
NMOS ON Resistance	R_{DSON}		300	400	mΩ	$I_{\rm OUT}$ = 0.3A; $T_{\rm j}$ = 25°C; 9V < $V_{\rm S}$ < 34V; $V_{\rm IN}$ = 5V	5.0.1
NMOS ON Resistance	R_{DSON}		480	600	mΩ	$\begin{split} I_{\text{OUT}} &= \text{0.3A;} T_{\text{j}} = \text{125}^{\circ}\text{C;} \\ 9\text{V} &< V_{\text{S}} < \text{34V;} \\ V_{\text{IN}} &= \text{5V} \end{split}$	5.0.2
Nominal Load Current; device on PCB ¹⁾	I_{LNOM}	0.4			Α	$T_{\text{pin5}} = 85^{\circ}\text{C}$	5.0.3
Timings of Power Stages ²⁾							
Turn ON Time(to 90% of $V_{\rm out}$); L to H transition of $V_{\rm IN}$	t _{ON}			140	μs	$V_{\rm S}$ =13.5V; $R_{\rm L}$ = 47 Ω	5.0.4
Turn OFF Time (to 10% of $V_{\rm out}$); H to L transition of $V_{\rm IN}$	t_{OFF}			170	μs	$V_{\rm S}$ =13.5V; $R_{\rm L}$ = 47 Ω	5.0.5
ON-Slew Rate (10 to 30% of $V_{\rm out}$); L to H transition of $V_{\rm IN}$	SR _{ON}			2.0	V /µs	$V_{\rm S}$ =13.5V; $R_{\rm L}$ = 47 Ω	5.0.6
OFF-Slew Rate; $dV_{\rm OUT}/dt_{\rm ON}$ (70 to 40% of $V_{\rm out}$); H to L transition of $V_{\rm IN}$	SR _{OFF}			2.0	V/µs	$V_{\rm S}$ =13.5V; $R_{\rm L}$ = 47 Ω	5.0.7
Under voltage lockout (charge pu	mp start-	stop-re	start)				
Supply undervoltage; charge pump stop voltage	V_{SUV}			5.5	V	$V_{\rm S}$ decreasing	5.0.8
Supply startup voltage; Charge pump restart voltage	V_{SSU}			5.5	V	$V_{\rm S}$ increasing	5.0.9
Current consumption							
Operating current	I_{GND}			1.3	mA	V_{IN} = 5V	5.0.10
Standby current	I_{SSTB}			26	μΑ	V_{IN} = 0V; V_{OUT} = 0V -40°C < T_{i} < 85°C	5.0.11
Standby current	I_{SSTB}			26	μΑ	V_{IN} = 0V; T_{i} = 125°C	5.0.12
Output leakage current	I_{OUTLK}			12	μA	V_{IN} = 0V; V_{OUT} = 0V	5.0.13
Protection functions ³⁾		1	<u> </u>		L		1
Initial peak short circuit current limit	I_{LSCP}			2	А	$T_{\rm j}$ = -40°C; $V_{\rm S}$ = 20V; $V_{\rm IN}$ = 5.0V	5.0.14
Initial peak short circuit current limit	I_{LSCP}		1.2		А	$T_{\rm j}$ = 25°C; $V_{\rm S}$ = 20V; $V_{\rm IN}$ = 5.0V	5.0.15
Initial peak short circuit current limit	I_{LSCP}	0.4			А	$T_{\rm j}$ =125°C; $V_{\rm S}$ = 20V; $V_{\rm IN}$ = 5.0V	5.0.16

Electrical Characteristics

Table 4 V_s =13.5V; T_j = -40°C to 125°C; all voltages with respect to ground. Currents flowing into the device unless otherwise specified in chapter "Block Diagram and Terms". Typical values at V_s = 13.5V, T_j = 25°C

Symbol	Values		Unit	Note /	Number	
	Min.	Тур.	Max.		Test Condition	
I_{LSCR}		1		Α	V _{IN} = 5.0V	5.0.17
V_{DSCL}	41	47		V	$I_{\rm S}$ = 4mA	5.0.18
V_{SAZ}	41			V	$I_{\rm S}$ = 4mA	5.0.19
T_{jTrip}	150			°C		5.0.20
T_{HYS}		10		K		5.0.21
				·		·
V_{SREV}	- 32			V		5.0.22
V_{FDS}		600		mV	I_{FDS} = 200mA;	5.0.23
					V_{IN} = 0V; T_{j} = 125°C	
V_{INON}	2.2			V		5.0.24
V_{INOFF}			0.8	V		5.0.25
V_{INHYS}		0.3		V		5.0.26
I_{INOFF}	1		30	μΑ	$V_{IN} = 0.7 V$	5.0.27
+	1		30	μA	$V_{IN} = 5.0 \text{V}$	5.0.28
R_{IN}	1.5	3.5	5.0	kΩ		5.0.29
; pin ST						
$V_{\rm STZ}$	5.4	6.1	6.8	V	$I_{\rm ST}$ = 1.6mA	5.0.30
V_{STLO}			0.4	V	I_{ST} = 1.6mA T_{i} < 25°C	5.0.31
V_{STLO}			0.6	V	$I_{\rm ST}$ = 1.6mA $T_{\rm j}$ < 125°C	5.0.32
I_{STLK}			2	μΑ	$V_{\rm ST} = 5V$ $T_{\rm i} < 105^{\circ}{\rm C}$	5.0.33
$t_{\sf dP}$		300	600	μs	V _S = 20V	5.0.34
V_{OUTSC}		2.8		V		5.0.35
V_{OUTOL}		3		V		5.0.36
I_{OUTOL}		5		μA	$V_{OUT} = 4V$	5.0.37
	$I_{\rm LSCR}$ $V_{\rm DSCL}$ $V_{\rm SAZ}$ $T_{\rm jTrip}$ $T_{\rm HYS}$ $V_{\rm SREV}$ $V_{\rm FDS}$ $V_{\rm INON}$ $V_{\rm INOFF}$ $I_{\rm INOFF}$ $I_{\rm INON}$ $R_{\rm IN}$ $S_{\rm FILO}$ $V_{\rm STLO}$ $V_{\rm STLO}$ $V_{\rm STLO}$ $V_{\rm STLO}$ $V_{\rm OUTSC}$ $V_{\rm OUTOL}$	$\begin{array}{c c} \hline \textbf{Min.} \\ \hline I_{LSCR} \\ \hline \\ V_{DSCL} \\ \hline \\ V_{SAZ} \\ \hline \\ 41 \\ \hline \\ V_{SAZ} \\ \hline \\ 41 \\ \hline \\ I_{TjTrip} \\ \hline \\ 150 \\ \hline \\ I_{Thys} \\ \hline \\ \hline \\ V_{SREV} \\ \hline \\ V_{SREV} \\ \hline \\ V_{FDS} \\ \hline \\ \hline \\ V_{INON} \\ \hline \\ I_{INOFF} \\ \hline \\ I_{STINOFF} \\ \hline \\ I_{STZ} \\ \hline \\ V_{STLO} \\ \hline \\ V_{STLO} \\ \hline \\ V_{STLO} \\ \hline \\ V_{OUTSC} \\ \hline \\ V_{OUTSC} \\ \hline \\ V_{OUTOL} \\ \hline \\ \hline \end{array}$	Min. Typ. I_{LSCR} 1 V_{DSCL} 41 47 V_{SAZ} 41 47 V_{SAZ} 41 10 V_{HYS} 10 10 V_{SREV} - 32 - 32 V_{FDS} 600 600 V_{INOFF} - 32 - 32 V_{INOFF} - 4 - 32 V_{INOFF} 1 - 32 I_{INOFF} 1 - 3.5 I_{INOFF} 1 - 3.5 I_{INOFF} 1 - 3.5 I_{INOFF} 1 - 3.5 I_{INOFF} 5.4 6.1 V_{STLO} - 3.5 - 3.5 I_{STLK} - 300 - 3.00 I_{OUTSC} 2.8 - 3.00	Min. Typ. Max. I_{LSCR} 1 V_{DSCL} 41 47 V_{SAZ} 41 47 I_{TjTrip} 150 10 I_{HYS} 10 10 V_{SREV} - 32 0 V_{FDS} 600 0.8 V_{INON} 2.2 0.8 V_{INOFF} 0.3 0.3 I_{INOFF} 1 30 I_{INON} 1 30 I_{INON} 1.5 3.5 5.0 Spin ST V_{STZ} 5.4 6.1 6.8 V_{STLO} 0.6 0.6 0.6 I_{STLK} 2 0.6 0.6 V_{OUTSC} 2.8 0.0 0.0 V_{OUTOL} 3 0.0 0.0	Min. Typ. Max. I_{LSCR} 1 A V_{DSCL} 41 47 V V_{SAZ} 41 V V I_{TJrip} 150 °C C I_{HYS} 10 K V_{SREV} - 32 V V V_{INO} 2.2 V V V_{INOFF} 0.8 V V_{INOFF} 1 30 μA I_{INO} 1 30 μA I_{INON} 1 30 μA I_{INO} 1 6.8 V V_{STLO} 0.4 V V_{STLO} 0.6 V I_{STLK} 2 μA I_{OUTSC} 2.8 V V_{OUTOL} 3 V	$ \begin{array}{ c c c c c c } \hline \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} & \textbf{Test Condition} \\ \hline I_{LSCR} & 1 & A & V_{IN} = 5.0 \text{V} \\ \hline V_{DSCL} & 41 & 47 & V & I_S = 4\text{mA} \\ \hline V_{SAZ} & 41 & V & I_S = 4\text{mA} \\ \hline I_{JTrip} & 150 & ^{\circ}\text{C} \\ \hline I_{HYS} & 10 & K \\ \hline \hline V_{SREV} & -32 & V & \\ \hline V_{FDS} & 600 & \text{mV} & I_{FDS} = 200\text{mA;} \\ \hline V_{INON} & 2.2 & V & \\ \hline V_{INOF} & 0.8 & V & \\ \hline V_{INOFF} & 1 & 30 & \mu A & V_{IN} = 0.7 \text{V} \\ \hline I_{INOF} & 1 & 30 & \mu A & V_{IN} = 5.0 \text{V} \\ \hline I_{NON} & 1 & 3.5 & 5.0 & k\Omega \\ \hline \textbf{Spin ST} & \\ \hline V_{STLO} & 0.6 & V & I_{ST} = 1.6\text{mA} \\ \hline V_{STLO} & 0.6 & V & I_{ST} = 1.6\text{mA} \\ \hline I_{T} < 25^{\circ}\text{C} & \\ \hline I_{STLK} & 2 & \mu A & V_{ST} = 5 \text{V} \\ \hline I_{T} < 105^{\circ}\text{C} & \\ \hline V_{OUTSC} & 2.8 & V & \\ \hline \end{array}$

¹⁾ Device on 50mm x 50mm x 1,5mm epoxy FR4 PCB with 6cm² (one layer copper 70um thick) copper area for supply voltage connection. PCB in vertical position without blown air.

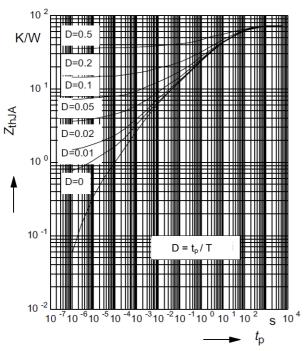
Data Sheet 8 Rev 1.0, 2012-09-01

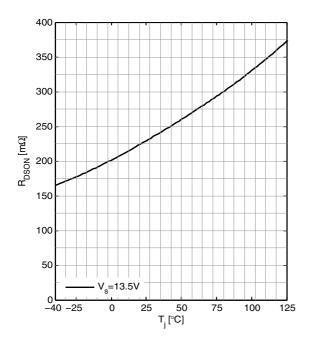
²⁾ Timing values only with high slewrate input signal; otherwise slower.

³⁾ Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

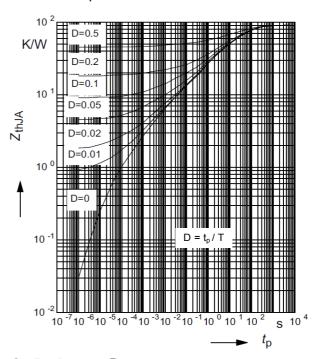
Electrical Characteristics

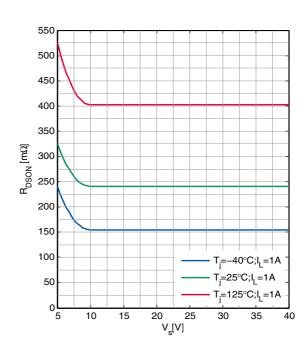
- 4) Requires a 150Ω resistor in GND connection. The reverse load current trough the intrinsic drain-source diode of the power-MOS has to be limited by the connected load. Power dissipation is higher compared to normal operation due to the votage drop across the drain-source diode. The temperature protection is not functional during reverse current operation! Input current has to be limited (see max ratings).
- 5) No delay time after overtemparature switch off and short circuit in on-state.
- 6) External pull up resistor required for open load detection in off state.
- 7) External pull up resistor required for open load detection in off state.


Data Sheet 9 Rev 1.0, 2012-09-01

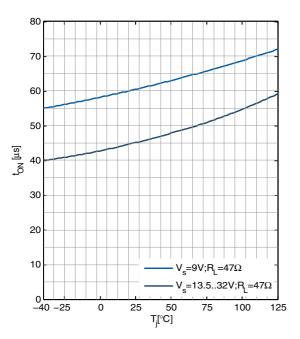

6 Typical Performance Graphs

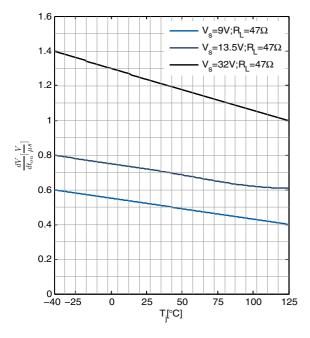
Typical Performance Characteristics


Transient Thermal Impedance $Z_{\rm thJA}$ versus Pulse Time $t_{\rm p}$ @ 6cm² heatsink area

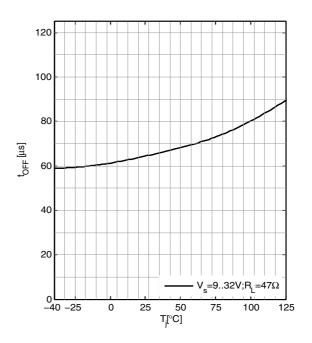

On-Resistance $R_{\rm DSON}$ versus Junction Temperature $T_{\rm i}$

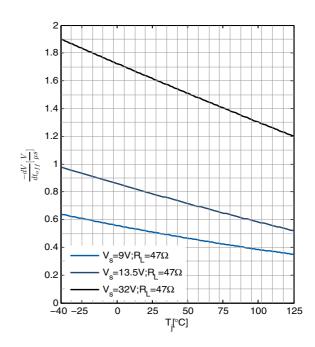
Transient Thermal Impedance Z_{thJA} versus Pulse Time t_{p} @ min footprint


On-Resistance R_{DSON} versus Supply Voltage V_{S}

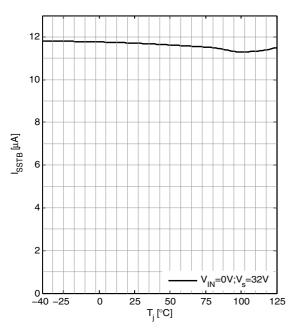


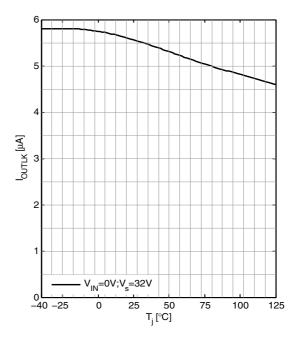
Typical Performance Characteristics


Switch ON Time $t_{\rm ON}$ versus Junction Temperature $T_{\rm i}$

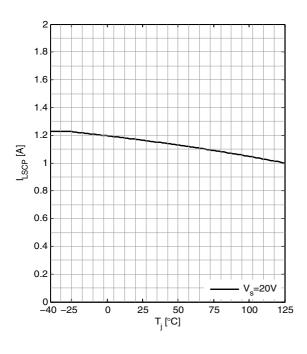

ON Slewrate SR_{ON} versus Junction Temperature T_{i}

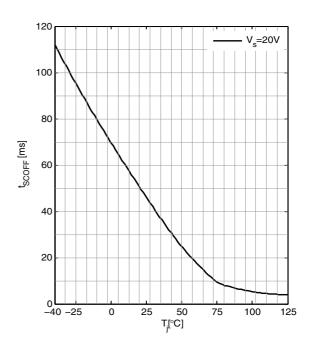
Switch OFF Time t_{OFF} versus Junction Temperature T_{j}


OFF Slewrate SR_{OFF} versus Junction Temperature T_i

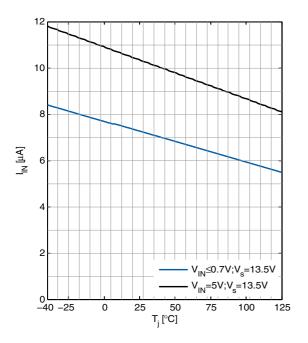


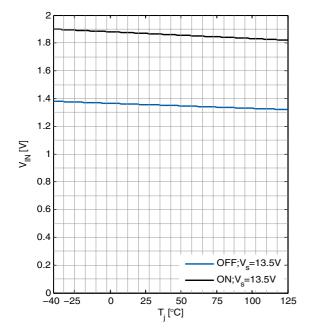
Typical Performance Characteristics


Standby Current I_{SSTB} versus Junction Temperature T_{i}

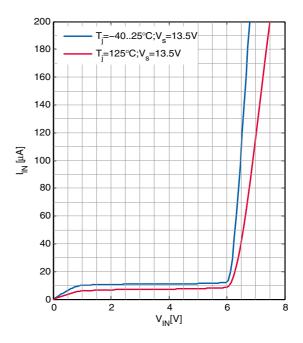

Output Leakage current $I_{\rm OUTLK}$ versus Junction Temperature $T_{\rm i}$

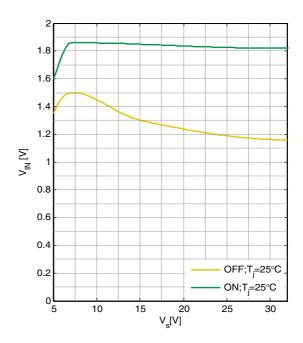
Initial Peak Short Circuit Current Limt $I_{\rm LSCP}$ versus Junction Temperature $T_{\rm i}$


Initial Short Circuit Shutdown time $t_{\rm SCOFF}$ versus Junction Temperature $T_{\rm i}$

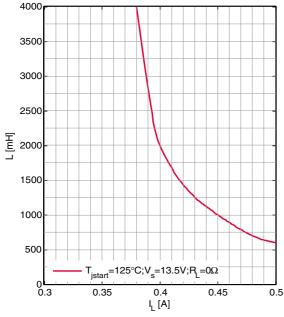


Typical Performance Characteristics

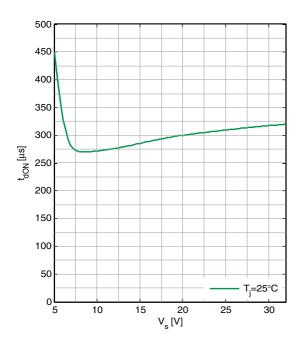

Input Current Consumption $I_{\rm IN}$ versus Junction Temperature $T_{\rm j}$


Input Threshold voltage $V_{\mathrm{INH,L}}$ versus Junction Temperature T_{i}

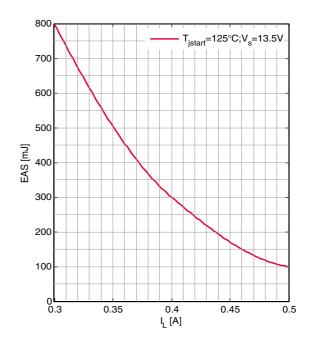
Input Current Consumption I_{IN} versus Input voltage V_{IN}



Input Threshold voltage $V_{\rm INH,L}$ versus Supply Voltage $V_{\rm S}$



Max. allowable Load Inductance L versus Load current $I_{\rm L}$



Status Delay Time t_{dP} versus

Supply Voltage V_{S}

Max. allowable Inductive single pulse Switch-off Energy $E_{\rm AS}$ versus Load current $I_{\rm L}$

7 Application Information

7.1 Application Diagram

The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty for a certain functionality, condition or quality of the device.

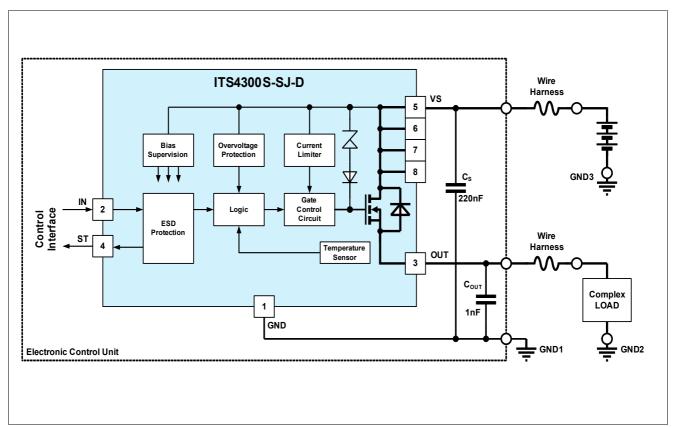


Figure 4 Application Diagram

The ITS4300S-SJ-D can be connected directly to a supply network. It is recommended to place a ceramic capacitor (e.g. $C_S = 220$ nF) between supply and GND to avoid line disturbances. Wire harness inductors/resistors are sketched in the application circuit above.

The complex load (resistive, capacitive or inductive) must be connected to the output pin OUT.

A built-in current limit protects the device against destruction.

The ITS4300S-SJ-D can be switched on and off with standard logic ground related logic signal at pin IN.

In standby mode (IN=L) the ITS4300S-SJ-D is deactivated with very low current consumption.

The output voltage slope is controlled during on and off transistion to minimize emissions. Only a small ceramic capacitor COUT=1nF is recommended to attenuate RF noise.

In the following chapters the main features, some typical waverforms and the protection behaviour of the ITS4300S-SJ-D is shown. For further details please refer to application notes on the Infineon homepage.

7.2 Diagnosis Description

For diagnostic purpose the device provides a digital output pin ST in order to indicate fault conditions.

The status output (ST) of the ITS4300S-SJ-D is a high voltage open drain output.

In "normal" operation mode the NMOS open drain transistor is switched OFF.

The following truth table defines the status output.

Table 5 Truth Table of diagnosis feature

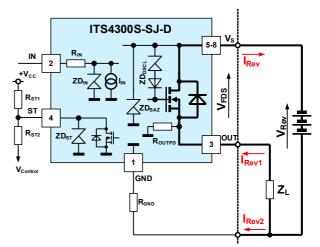
Device Operation	IN	OUT	ST	Comment
Normal Operation	Н	Н	Н	
Short circuit to GND	L	L	Н	No diagnosis
Short circuit to GND	Н	L	L	OUT=L: $V_{\rm OUT} < V_{\rm OUTSC}$; Short circuit detection voltage; typ 2.8V
Short Circuit to V _S (in OFF state)	L	Н	L	
Short Circuit to V _S (in ON state)	Н	Н	Н	No diagnosis
Overload	L	L	Н	No diagnosis
Overload	Н	Н	Н	OUT=H: $V_{\rm OUT} > V_{\rm OUTSC}$; Short circuit detection voltage; typ 2.8V
Overtemperature	L	L	Н	No diagnosis
Overtemperature	Н	L	L	
Open Load in OFF state	L	Н	L	
Open Load in OFF state	Н	Н	Н	No diagnosis

7.3 Special Feature Description

Supply over voltage:

ITS4300S-SJ-D Vs ZD_{IN} ZD_{IN} ZD_{SAZ} R_{OUTPD} 3 OUT R_{OND} ZD_{SAZ} ZD_{SA}

If over-voltage is applied to the V_S-Pin:


Voltage is limited to V_{ZDSAZ} ; current can be calculated:

 $I_{ZDSAZ} = (V_S - V_{ZDSAZ}) / R_{GND}$

A typical value for RGND is 150Ω .

In case of ESD pulse on the input pin there is in both polarities a peak current $I_{INpeak} \sim V_{ESD} / R_{IN}$

Supply reverse voltage:

If reverse voltage is applied to the device:

1.) Current via load resistance RL:

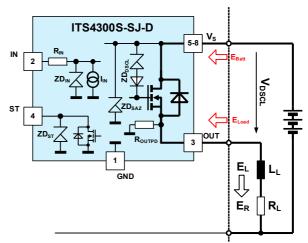
 $I_{Rev1} = (V_{Rev} - V_{FDS}) / R_L$

2.) Current via Input pin IN and dignostic pin ST:

 $I_{Rev2} = I_{ST} + I_{IN} \sim (V_{Rev} - V_{CC})/R_{IN} + (V_{Rev} - V_{CC})/R_{ST1,2}$ Current I_{ST} must be limited with the extrernal series resistor R_{STS} . Both currents will sum up to:

$$I_{Rev} = I_{Rev1} + I_{Rev2}$$

Drain-Source power stage clamper V_{DSCL}:


ITS4300S-SJ-D IN ZD_{IN} ZD_{SAZ} ZD_{SAZ} R_{OUTPD} 3 OUT R_{GND} R_{GND}

When an inductive load is switched off a current path must be established until the current is sloped down to zero (all energy removed from the inductive load). For that purpose the series combination Z_{DSCL} is connected between Gate and Drain of the power DMOS acting as an active clamp.

When the device is switched off, the voltage at OUT turns negative until $V_{\mbox{\scriptsize DSCL}}$ is reached.

The voltage on the inductive load is the difference between V_{DSCL} and $V_{\text{S}}.$

Energy calculation:

Energy stored in the load inductance is given by : $E_L = I_L^{2*}L/2$

While demagnetizing the load inductance the energy dissipated by the Power-DMOS is:

$$E_{AS} = E_S + E_L - E_R$$

With an approximate solution for $R_L = 0\Omega$: $E_{AS} = \frac{1}{2} * L * I_L^2 * \{(1 - V_S / (V_S - V_{DSCL}))\}$

Figure 5 Special feature description

7.4 Typical Application Waveforms

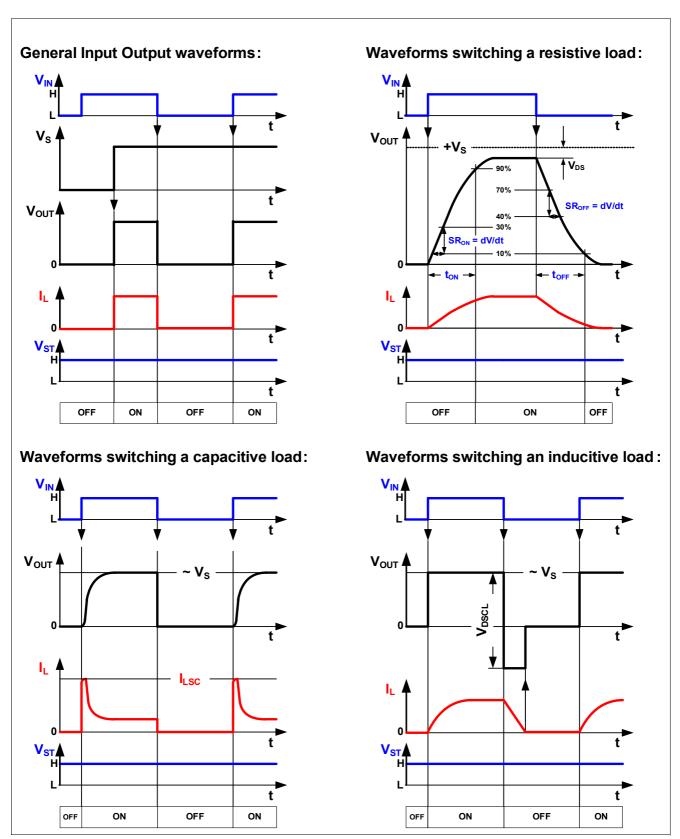


Figure 6 Typical application waveforms of the ITS4300S-SJ-D

7.5 Protection Behavior

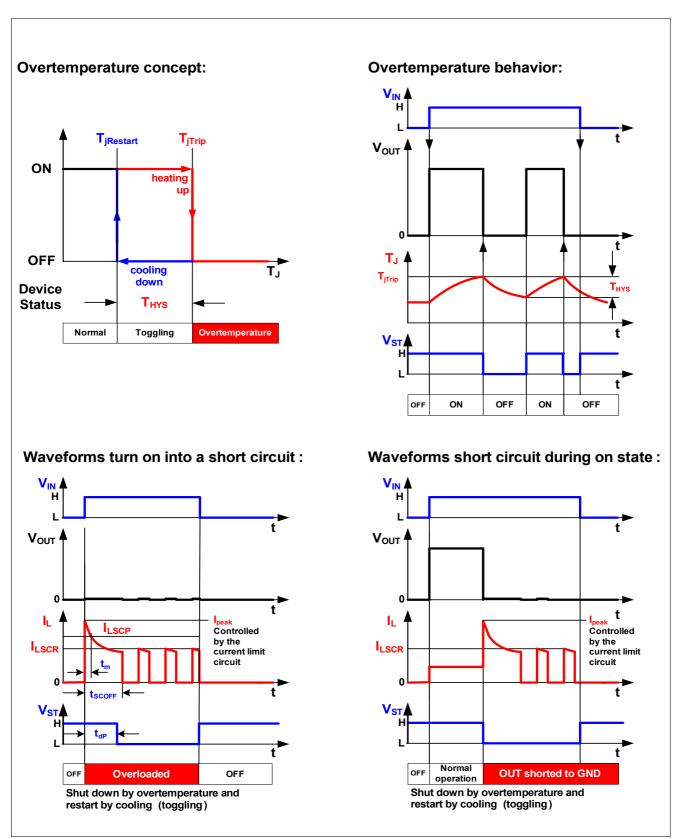


Figure 7 Protective behaviour of the ITS4300S-SJ-D

Package outlines and footprint

8 Package outlines and footprint

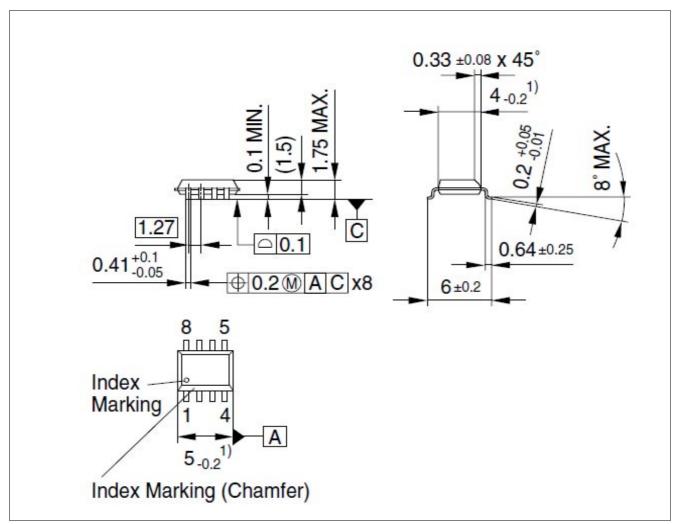


Figure 8 PG-DSO-8 (Plastic Dual Small Outline Package, RoHS-Compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020

Revision History

9 Revision History

Revision	Date	Changes
V 1.0	12-09-01	Datasheet release

Trademarks of Infineon Technologies AG

AURIXTM, C166TM, Canpaktm, CIPOSTM, CIPURSETM, Econopacktm, CoolMostm, CoolSettm, Corecontroltm, Crossavetm, Davetm, DI-Poltm, EasyPIMTM, Econobridgetm, Econopualtm, Econopimtm, Econopacktm, Eicedrivertm, eupectm, Fcostm, Hitfettm, Hybridpacktm, I²rftm, Isofacetm, Isopacktm, MIPaqtm, Modstacktm, my-dtm, NovalithIctm, OptiMostm, Origatm, Powercodetm; Primariontm, PrimePacktm, PrimeStacktm, Pro-Siltm, Profettm, Rasictm, Reversavetm, Satrictm, Siegettm, Sindriontm, Sipmostm, Smartlewistm, Solid Flashtm, Tempfettm, thinq!tm, Trenchstoptm, Tricoretm.

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-11-11

Edition 2012-09-01

Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.