

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

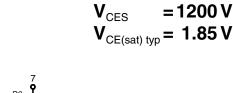


# Contact us

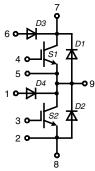
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

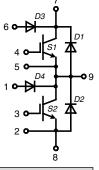
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





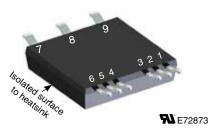

# **XPT IGBT phaseleg ISOPLUS<sup>TM</sup> Surface Mount Power Device**



C25






| S2                                                                                                                          |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conditions                                                                                                                  | Maximum Rati                                                                                                                                                                                                                                                                                                                                 | ings                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $T_{VJ} = 25^{\circ}C$ to $150^{\circ}C$                                                                                    | 1200                                                                                                                                                                                                                                                                                                                                         | V                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                             | ±20                                                                                                                                                                                                                                                                                                                                          | V                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $T_C = 25$ °C<br>$T_C = 80$ °C                                                                                              | 63<br>45                                                                                                                                                                                                                                                                                                                                     | A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $V_{GE} = 15 \text{ V}; R_G = 27 \Omega; T_{VJ} = 125^{\circ}\text{C}$ RBSOA, clamped inductive load; L = 100 $\mu\text{H}$ | 105<br><b>V</b> <sub>ces</sub>                                                                                                                                                                                                                                                                                                               | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $V_{CE} = 900 \text{ V}; \ V_{GE} = \pm 15 \text{ V}; \ R_G = 27 \ \Omega; T_{VJ} = 125 ^{\circ}\text{C}$ none repetitive   | 10                                                                                                                                                                                                                                                                                                                                           | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $T_{VJ} = 25^{\circ}C$                                                                                                      | 230                                                                                                                                                                                                                                                                                                                                          | W                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                             | Conditions $T_{VJ}=25^{\circ}\text{C to }150^{\circ}\text{C}$ $T_{C}=25^{\circ}\text{C}$ $T_{C}=80^{\circ}\text{C}$ $V_{GE}=15\text{ V}; R_{G}=27\Omega; T_{VJ}=125^{\circ}\text{C}$ RBSOA, clamped inductive load; L = 100 $\mu$ H $V_{CE}=900\text{ V}; V_{GE}=\pm15\text{ V}; R_{G}=27\Omega; T_{VJ}=125^{\circ}\text{C}$ none repetitive | Conditions         Maximum Ration $T_{VJ} = 25^{\circ}\text{C}$ to $150^{\circ}\text{C}$ 1200 $T_{C} = 25^{\circ}\text{C}$ 63 $T_{C} = 80^{\circ}\text{C}$ 45 $V_{GE} = 15 \text{ V}; R_{G} = 27 \Omega; T_{VJ} = 125^{\circ}\text{C}$ 105           RBSOA, clamped inductive load; L = 100 μH $V_{CES}$ $V_{CE} = 900 \text{ V}; V_{GE} = \pm 15 \text{ V}; R_{G} = 27 \Omega; T_{VJ} = 125^{\circ}\text{C}$ 10           none repetitive         10 |

### **Conditions Symbol**

### Characteristic **Values**

 $(T_{VJ} = 25^{\circ}C, \text{ unless otherwise specified})$ 

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | min. | typ.                                 | max.         |                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------|--------------------------------------|--------------|----------------------------------|
| $V_{CE(sat)}$ $I_C = 35 \text{ A}; V_{GE} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 V; $T_{VJ} = 25^{\circ}C$<br>$T_{VJ} = 125^{\circ}C$ |      | 1.85<br>2.2                          | 2.15         | V                                |
| $V_{GE(th)}$ $I_C = 1.5 \text{ mA; } V_{GE}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = V <sub>CE</sub>                                      | 5.4  |                                      | 6.5          | V                                |
| $I_{CES}$ $V_{CE} = V_{CES}; V_{GE} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 V; $T_{VJ} = 25^{\circ}C$<br>$T_{VJ} = 125^{\circ}C$ |      | 0.25                                 | 0.15         | mA<br>mA                         |
| $I_{GES}$ $V_{CE} = 0 V_{;} V_{GE} = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ± 20 V                                                 |      |                                      | 200          | nA                               |
| $ \begin{array}{c c} \textbf{t}_{d(on)} \\ \textbf{t}_r \\ \textbf{t}_{d(off)} \\ \textbf{t}_f \\ \textbf{E}_{on} \\ \textbf{E}_{off} \\ \end{array} \right\} \begin{array}{c} \text{Inductive load; T} \\ \textbf{V}_{CE} = 600 \text{ V; I}_C = \\ \textbf{V}_{GE} = \pm 15 \text{ V; R}_G = \\ \textbf{V}_{GE} = \pm 15 \text{ V; R}_G = \\ \textbf{V}_{GE} = \pm 15 \text{ V; R}_G = \\ \textbf{V}_{GE} = \pm 15 \text{ V; R}_G = \\ \textbf{V}_{GE} = \frac{1}{2} \\ \textbf{V}_{GE} $ | 35 A                                                   |      | 70<br>40<br>250<br>100<br>3.8<br>4.1 |              | ns<br>ns<br>ns<br>ns<br>mJ<br>mJ |
| $ \begin{array}{ccc} \textbf{C}_{\text{ies}} & \textbf{V}_{\text{CE}} = 25 \text{ V; V}_{\text{GE}} = \\ \textbf{Q}_{\text{Gon}} & \textbf{V}_{\text{CE}} = 600 \text{ V; V}_{\text{GE}} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                                      |      | tbd<br>107                           |              | pF<br>nC                         |
| R <sub>thJC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mpound (IXYS test setup)                               |      | 0.75                                 | 0.55<br>0.95 | K/W<br>K/W                       |



63 A

### **Features**

### XPT IGBT

- low saturation voltage
- positive temperature coefficient for easy paralleling
- fast switching
- short tail current for optimized performance in resonant circuits

### • Sonic™ diode

- fast reverse recovery
- low operating forward voltage
- low leakage current

### V<sub>CEsat</sub> detection diode

- integrated into package
- very fast diode

### • Package

- isolated back surface
- low coupling capacity between pins and heatsink
- PCB space saving
- enlarged creepage towards heatsink
- application friendly pinout
- low inductive current path
- high reliability

### **Applications**

### Phaseleg

- buck-boost chopper

### • Full bridge

- power supplies
- induction heating
- four quadrant DC drives
- controlled rectifier

### • Three phase bridge

- AC drives
- controlled rectifier



### 

# Symbol Conditions Characteristic Values (T<sub>VJ</sub> = 25°C, unless otherwise specified)

typ. max.  $T_{VJ} = 25^{\circ}C$  $V_{F}$  $I_{\rm F} = 35 \, {\rm A}$ 2.1 2.4 ٧  $T_{VJ} = 125^{\circ}C$ ٧ 2.1  $\mathbf{I}_{\mathrm{RM}}$ Α 30  $I_F = 35 \text{ A}; R_G = 27 \Omega; T_{VJ} = 125^{\circ}\text{C}$ 350 ns  $V_R = 600 \text{ V}; V_{GE} = -15 \text{ V}$ tbd  $E_{rec}$ mJ  $\textbf{R}_{\text{thJC}}$ K/W per diode 0.9  $R_{\text{thJH}}$ with heatsink compound (IXYS test 1.2 1.5 K/W

### Diodes D3, D4

| Symbol  | Conditions                  | Maximum Ratings |
|---------|-----------------------------|-----------------|
| $V_{R}$ | $T_{\rm C}$ = 25°C to 150°C | 1200 V          |

### **Symbol Conditions**

## Characteristic Values

 $(T_{VJ} = 25^{\circ}C, \text{ unless otherwise specified})$ 

|                 |                                                     |                                   | min. | typ. | max. |    |
|-----------------|-----------------------------------------------------|-----------------------------------|------|------|------|----|
| V <sub>F</sub>  | $I_F = 1 A$                                         | $T_{VJ} = 25^{\circ}C$            |      | 1.7  | 2.2  | V  |
|                 | •                                                   | $T_{VJ} = 125^{\circ}C$           |      | 1.5  |      | V  |
| I <sub>R</sub>  | V <sub>B</sub> = 1200 V                             | T <sub>v,i</sub> = 25°C           |      |      | 2    | μA |
|                 |                                                     | $T_{VJ} = 125^{\circ}C$           |      | 30   |      | μA |
| I <sub>RM</sub> | $I_{\rm F} = 1 \text{ A; di}_{\rm F}/\text{dt} = -$ | 100 A/μs; T <sub>v,i</sub> = 25°C |      | 2.3  |      | A  |
| t <sub>rr</sub> | $\int V_{R} = 100 \text{ V}; V_{GE} =$              |                                   |      | 40   |      | ns |

### Component


| Symbol            | Conditions                         | Maximum Rati       | Maximum Ratings |  |  |  |
|-------------------|------------------------------------|--------------------|-----------------|--|--|--|
| T <sub>v</sub> ,  |                                    | -55+150<br>-55+125 | o°C             |  |  |  |
| V <sub>ISOL</sub> | I <sub>ISOL</sub> ≤ 1 mA; 50/60 Hz | 2500               |                 |  |  |  |
| F <sub>c</sub>    | mounting force                     | 40 130             | N               |  |  |  |

| Symbol                                                           | Conditions                                                |           | Characteristic Values |      |          |  |
|------------------------------------------------------------------|-----------------------------------------------------------|-----------|-----------------------|------|----------|--|
|                                                                  |                                                           | min.      | typ.                  | max. |          |  |
| C <sub>P</sub>                                                   | coupling capacity between shorted pins and backside metal |           | 90                    |      | pF       |  |
| d <sub>s,</sub> d <sub>A</sub><br>d <sub>s,</sub> d <sub>A</sub> | pin - pin<br>pin - backside metal                         | 1.65<br>4 |                       |      | mm<br>mm |  |
| СТІ                                                              |                                                           | 400       |                       |      |          |  |
| Weight                                                           |                                                           |           | 8                     |      | g        |  |

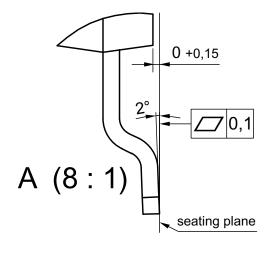
| Ordering | Ordering Name     | Marking on Product | Delivering<br>Mode | Base<br>Qty | Ordering<br>Code |
|----------|-------------------|--------------------|--------------------|-------------|------------------|
| Standard | IXA 40PG1200DHGLB | IXA40PG1200DHGLB   | Tape&Reel          | 200         | tbd              |

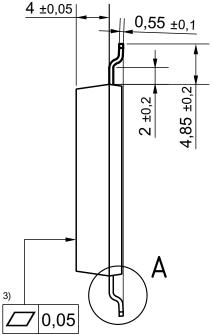
### **Equivalent Circuits for Simulation**

### Conduction



IGBTs (typ. at  $V_{GE} = 15 \text{ V}$ ;  $T_{J} = 125^{\circ}\text{C}$ ) S1, S2  $V_{0} = 1.1 \text{ V}$ ;  $R_{0} = 40 \text{ m}\Omega$ 


Diodes (typ. at T $_{\rm J}$  = 125°C) D1, D2  $V_0$  = 1.3 V;  $R_0$  = 28  $m\Omega$ 






# 25 ±0,2 ¹) 18 ±0,1 9 ±0,1 (3x) 2 ±0,05 ²) 2,75 ±0,1 Notes:

### **Dimensions in mm (1 mm = 0.0394")**





- 1) potrusion may add 0.2 mm max. on each side
- 2) additional max. 0.05 mm per side by punching misalignement or overlap of dam bar or bending compression
- 3) DCB area 10 to 50 μm convex; position of DCB area in relation to plastic rim: ±25 μm (measured 2 mm from Cu rim)
- 4) terminal plating:  $0.2 1 \mu m \text{ Ni} + 10 25 \mu m \text{ Sn}$  (gal v.) cutting edges may be partially free of plating

13,5 ±0,1

16,25 ±0,1

19 ±0,1

 $5,5 \pm 0,1$