

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

600mA Half-Bridge Driver

Features

- Floating High Side Driver with boot-strap Power supply along with a Low Side Driver.
- · Fully operational to 650V
- ± 50V/ns dV/dt immunity
- Gate drive power supply range: 10 35V
- · Undervoltage lockout for both output drivers
- Separate Logic power supply range: 3.3V to $\rm V_{\rm cl}$
- Built using the advantages and compatibility of CMOS and IXYS HDMOS™ processes
- Latch-Up protected over entire operating range
- · High peak output current: 600 mA
- · Matched propagation delay for both outputs
- · Low output impedance
- · Low power supply current
- · Immune to negative voltage transients

Warning: The IXA611 is ESD sensitive.

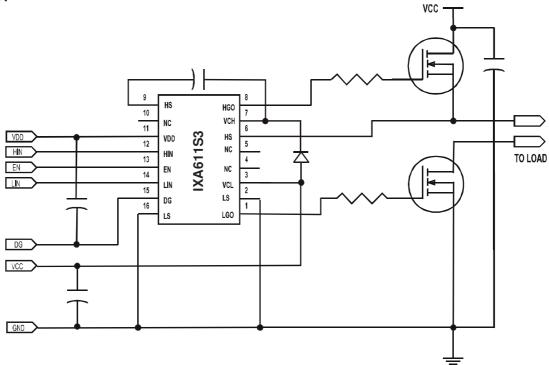
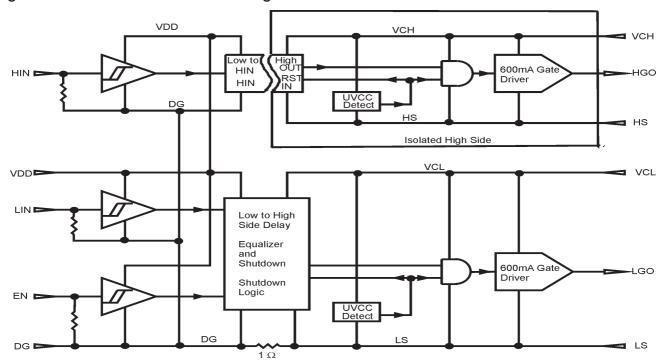
General Description

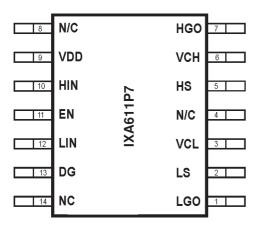
The IXA611 is a Bridge Driver for N-channel MOSFETs and IGBTs with a high side and low side output, whose input signals reference the low side. The High Side driver can control a MOSFET or IGBT connected to a positive buss voltage up to 650V. The logic input stages are compatible with TTL or CMOS, have built-in hysteresis and are fully immune to latch up over the entire operating range. The IXA611 can withstand dV/dt on the output side up to \pm 50V/ns.

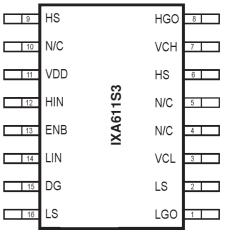
The IXA611 comes in either the 16-PIN SOIC package (IXA611S3) or the 14-PIN DIP through-hole package (IXA611P7)

Applications

- Driving MOSFETs and IGBTs in half-bridge circuits
- · High voltage, high side and low side drivers
- Motor Controls
- Switch Mode Power Supplies (SMPS)
- DC to DC Converters
- · Class D Switching Amplifiers




Figure 2 - IXA611 Functional Block Diagram

Pin Description And Configuration

SYMBOL	FUNCTION	DESCRIPTION
VDD	Logic Supply	Positive power supply for the chip CMOS functions
HIN	HS Input	High side Input signal, TTL or CMOS compatible; HGO in phase
LIN	LS Input	Low side Input signal, TTL or CMOS compatible; LGO in phase
ENB	Enable	Chip enable. When driven high, both outputs go low.
DG	Ground	Logic Reference Ground
VCH	Supply Voltage	High Side Power Supply
HGO	Output	High side driver output
HS	Return	High side voltage return pin
VCL	Supply Voltage	Low side power supply. This power supply provides power for
		both outputs. Voltage range is from 4.5 to 25V.
LGO	Output	Low side driver output
LS	Ground	Low side return
·		

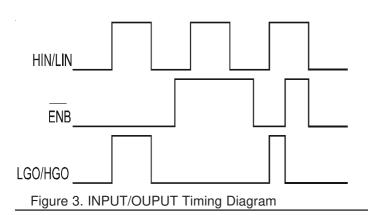
IXYS ICs are covered by US Patent No. 6,759,692

Absolute Maximum Ratings

Symbol	Definition	Min	Max	Units
V _{CH}	High side floating supply voltage	-25	650	V
V_{HS}	High side floating supply offset voltage	V _{CH} -200	V _{CH} +.3	V
V_{HGO}	High side floating output voltage	V_{HS} 3	$V_{CH}+.3$	V
V_{CL}	Low side fixed supply voltage	-0.3	35	V
V_{LGO}	Low side output voltage	-0.3	$V_{CL}+.3$	V
V_{DD}	Logic supply voltage	-0.3	$V_{DG} + 35$	V
V_{DG}	Logic supply offset voltage	V_{LS} -3.8	V_{LS} +3.8	V
V_{IN}	Logic input voltage(HIN & LIN)	V_{SS} 3	$V_{DD}+.3$	V
dV_s/dt	Allowable offset supply voltage transient		50	V/ns
P_{D}	Package power dissipation@ T _A ≤ 25C		1	W
P_{D}	Package power dissipation@ T _C ≤ 25C		2.1	W
R _{THJA}	Thermal resistance, junction-to-ambient		125	K/W
R _{THJc}	Thermal resistance, junction-to-case		60	K/W
T _J	Junction Temperature		150	°C
T _s	Storage temperature	-55	150	°C
T _L	Lead temperature (soldering, 10 s)		300	°C

Recommended Operating Conditions

Symbol	Definition	Min	Max	Units
V _{CH}	High side floating supply absolute voltage	V _{HS} +10	V _{HS} +20	V
V _{HS}	High side floating supply offset voltage	-20	650	V
V_{HGO}	High side floating output voltage	V_{HS}	$V_{CH}+20$	V
V _{CL}	Low side fixed supply voltage	10	20	V
V_{LGO}	Low side output voltage	0	V_{cc}	V
V_{DD}	Logic supply voltage	$V_{DG} + 3$	$V_{DG} + 20$	V
V_{DG}	Logic supply voffset voltage	V_{LS} -1	$V_{LS}+1$	V
V _{IN}	Logic input voltage(HIN, LIN, ENbar)	$V_{_{ m DG}}$	$V_{_{\mathrm{DD}}}$	V
T _A	Ambient Temperature	-40	125	°C


Ordering Information			
Part Number	Package Type		
IXA611P7	14-PIN DIP		
IXA611S3	16-PIN SOIC		

ymbol	Definition	Test Conditions	Min	Тур	Max	Units
	Turn-on propagation delay	$V_{HS} = 0V, C_{load} = 2nF$		120		ns
ŧ	Turn-off propagation delay	$V_{HS} = 600V$, $C_{load} = 2nF$		87		ns
1	Device enable delay			202		ns
	Turn-on rise time	$C_{load} = 2nF$		23		ns
	Turn-off fall time	C _{load} = 2nF		22		ns
n	Delay matching, HS & LS turn-on/off	C _{load} = 2nF		50		ns

Static El	lectrical Characteristics Definition	Test Conditions	Min	Тур	Max	Units
Cymbol	Seminion	rest conditions		ı yp	Mux	Omis
V_{INH}	Logic "1" input voltage	$V_{DD} = V_{CL} = 15V$	7.0			V
V _{INL}	Logic "0" input voltage				6	V
	GO High level output voltage,	I ₀ = 0A		0.28		V
	$V_{CH}^{-}V_{HGO}^{-}$ or $V_{CL}^{-}V_{LGO}^{-}$					
V_{LLGO}/V_{LHG}	o High level output voltage,	I ₀ = 0A		.23		V
	V_{HGO} or V_{LGO}					
I _{HL}	HS to LS bias current.	$V_{HS} = V_{CH} = 600V$.17		mA
I _{QHS}	Quiescent V _{CH} supply current	$V_{IN} = 0V \text{ or } V_{DD}$.77		mA
I _{QLS}	Quiescent V _{CL} supply current	$V_{IN} = 0V \text{ or } V_{DD}$.79		mA
I _{QDD}	Quiescent V _{DD} supply current	$V_{IN} = 0V \text{ or } V_{DD}$		36		uA
I _{IN} +	Logic "1" input bias current	$V_{IN} = V_{DD}$		2		uA
I _{IN} -	Logic "0" input voltage	V _{IN} = 0V		1		uA
V _{CHUV} +	V _{CH} supply undervoltage positive going threshold.			8.3		V
V _{CHUV} -	V _{CH} supply undervoltage negative going threshold.			8.2		V
V _{CLUV} +	V _{CL} supply undervoltage positive going threshold			8.1		V
V _{CLUV} -	V _{CL} supply undervoltage negative	e going threshold.		8.0		V
I _{GO}	HS or LS Output low short circuit	current; V_{GO} = 15V, V_{IN} = 0V, PW<10us		± 0.6		Α

Timing Waveform Definitions

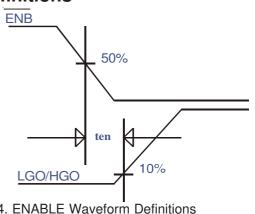


Figure 4. ENABLE Waveform Definitions

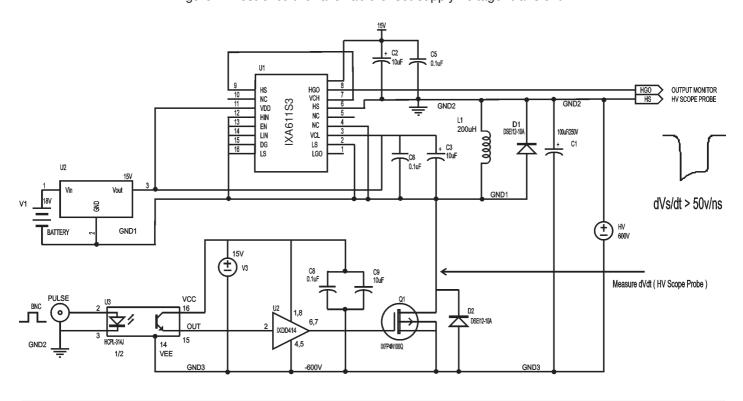
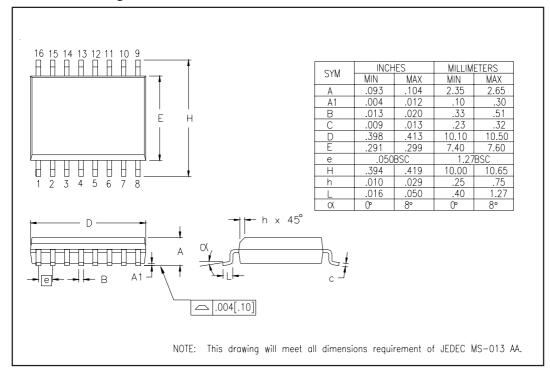
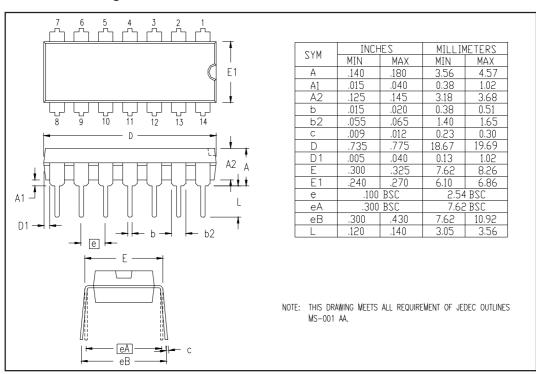

Timing Waveform Definitions

Figure 5. Definitions of Switching Time Waforms Figure 6. Definitions of Delay Matching Waveforms 50% 50% tenb HIN/LIN 50% tdoff LIN LG0 tenb **LOW SIDE** HGO/LGO tenb 50% **HGO**

Figure 7. Test circuit for allowable offset supply voltage transient.


tenb

HIGH SIDE



IXA611S3 Package Outline

IXA611P7 Package Outline

IXYS Corporation 3540 Bassett St; Santa Clara, CA 95054 Tel: 408-982-0700; Fax: 408-496-0670 e-mail: sales@ixys.net

www.ixys.com

IXYS Semiconductor GmbH Edisonstrasse15; D-68623; Lampertheim Tel: +49-6206-503-0; Fax: +49-6206-503627 e-mail: marcom@ixys.de