

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IGBT with optional Diode

High Speed, Low Saturation Voltage $V_{CES} = 600 V$ $I_{C25} = 38 A$ $V_{CE(sat) typ} = 2.2 V$

G = Gate, C = Collector, E = Emitter TAB = Collector

Symbol	Conditions	Maximum Ratings		
V _{CES}	T _J = 25°C to 150°C	600	V	
\mathbf{V}_{CGR}	$T_{_J}~=25^{\circ}C$ to 150°C; $R_{_{GE}}=20~k\Omega$	600	V	
V _{GES}	Continuous	±20	V	
\mathbf{V}_{GEM}	Transient	±30	V	
I _{C25}	$T_{C} = 25^{\circ}C$	38	Α	
I _{C90}	$T_{C} = 90^{\circ}C$	24	Α	
I _{CM}	$T_C = 90$ °C, $t_p = 1$ ms	48	Α	
RBSOA	V_{GE} = ±15 V, T_J = 125°C, R_G = 10 Ω Clamped inductive load, L = 30 μH	$I_{CM} = 110$ $V_{CEK} < V_{CES}$	Α	
t _{sc} (SCSOA)	V_{GE} = ±15 V, V_{CE} = 600 V, T_J = 125°C R_G = 10 Ω , non repetitive	10	μs	
P _c	T _C = 25°C IGBT Diode	125 50	W	
T _J		-55 +150	°C	
T_{stg}		-55 +150	°C	
V _{ISOL}	50/60 Hz RMS; I _{ISOL} ≤ 1 mA	2500	V~	
F _c	mounting force with clip	20120	N	
Weight	typical	6	g	

Symbol	Conditions	Characteristic Values		
		$(T_J = 25^{\circ}C, \text{ unless otherwise specified})$		
		main turn many		

				typ.	max.	
V _{(BR)CES}	$V_{GE} = 0 V$		600			V
V _{GE(th)}	$I_{\rm C}=0.7$ mA, $V_{\rm CE}=V_{\rm GE}$		3		5	V
I _{CES}	$V_{CE} = V_{CES}$	$T_J = 25$ °C $T_J = 125$ °C		1	0.1	mA mA
GES	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$				± 500	nA
V _{CE(sat)}	$I_{C} = 35 \text{ A}, V_{GE} = 15 \text{ V}$			2.2	2.7	V

Features

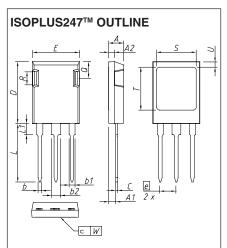
- NPT IGBT technology
- · low switching losses
- · low tail current
- · no latch up
- short circuit capability
- positive temperature coefficient for easy paralleling
- · MOS input, voltage controlled
- · optional ultra fast diode
- Epoxy meets UL 94V-0
- Isolated and UL registered E153432

Advantages

- DCB Isolated mounting tab
- Meets TO-247AD package Outline
- Package for clip or spring mounting
- · Space savings
- · High power density

Typical Applications

- · AC motor speed control
- DC servo and robot drives
- · DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies



Symbol	Conditions Cha $(T_J = 25^{\circ}\text{C}, \text{ unless of min.})$		stic Values e specified) max.
C _{ies})	1600	pF
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	150	pF
C _{res}	J	90	pF
\mathbf{Q}_{g}	$I_{\rm C} = 35 \text{ A}, \ V_{\rm GE} = 15 \text{ V}, \ V_{\rm CE} = 480 \text{V}$	140	nC
t _{d(on)})	30	ns
t _r	Industries land T 105°C	45	ns
t _{d(off)}	Inductive load, T _J = 125°C	320	ns
t,	$\begin{cases} I_{c} = 35 \text{ A, } V_{GE} = \pm 15 \text{ V,} \\ V_{CF} = 300 \text{ V, } R_{G} = 10 \Omega \end{cases}$	70	ns
E _{on}	CE , G	1.6	mJ
E_{off})	0.8	mJ
R _{thJC} R _{thCH}	Package with heatsink compound	0.25	1 K/W K/W

Reverse Diode (FRED) [D1	version only]

Characteristic Values $(T_J = 25^{\circ}C, \text{ unless otherwise specified})$

Symbol	Conditions min	n.	typ.	max.	
V _F	$I_F = 35 \text{ A}, V_{GE} = 0 \text{ V}$ $I_F = 35 \text{ A}, V_{GE} = 0 \text{ V}, T_J = 125^{\circ}\text{C}$		2.1 1.6	2.3	V V
I _F	$T_C = 25$ °C $T_C = 90$ °C			35 18	A A
I _{RM}	$I_F = 15 \text{ A}, -di_F/dt = 400 \text{ A/}\mu\text{s}, V_R = 300 \text{ V}$		13		Α
t _{rr}	$V_{GE} = 0 \text{ V}, T_J = 125^{\circ}\text{C}$		90		ns
t _{rr}	$I_{\scriptscriptstyle F}=1$ A, -di $_{\scriptscriptstyle F}$ /dt = 100 A/ μ s, V $_{\scriptscriptstyle R}=30$ V, V $_{\scriptscriptstyle GE}=0$ V	/	40		ns
R_{thJC}				2.3	K/W

DIM.	MILLIMETER		INCHES			
DIF1.	MIN	MAX	MIN	MAX		
Α	4,83	5,21	0,190	0,205		
A1	2,29	2,54	0,090	0,100		
A2	1,91	2,16	0,075	0,085		
Ь	1, 14	1,40	0,045	0,055		
b1	1,91	2,15	0,075	0,085		
b2	2,92	3,20	0,115	0,126		
C	0,61	0,83	0,024	0,033		
D	20,80	21,34	0,819	0,840		
E	15,75	16,13	0,620	0,635		
e	5,45 BSC		0,215 BSC			
L	19,81	20,60	0,780	0,811		
L1	3,81	4,38	0,150	0,172		
Q	5,59	6,20	0,220	0,244		
R	4,32	4,85	0,170	0,191		
S	13,21	13,72	0,520	0,540		
T	15, 75	16,26	0,620	0,640		
U	1,65	2,03	0,065	0,080		
W	-	0,10	-	0,004		

The convex bow of substrate is typ. < 0.04 mm over plastic surface level of device bottom side This drawing will meet all dimensions requirement of JEDEC outline TO-247 AD except screw hole and except Lmax.

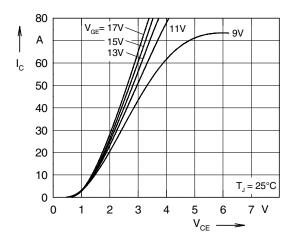


Fig. 1 Typ. output characteristics

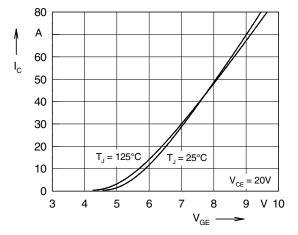


Fig. 3 Typ. transfer characteristics

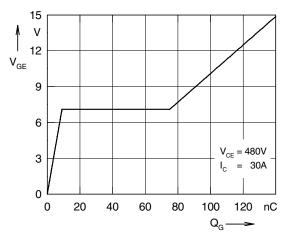


Fig. 5 Typ. turn on gate charge

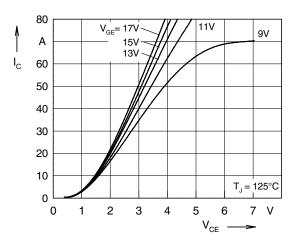


Fig. 2 Typ. output characteristics

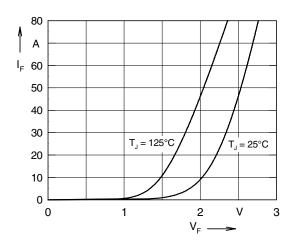


Fig. 4 Typ. forward characteristics of free wheeling diode

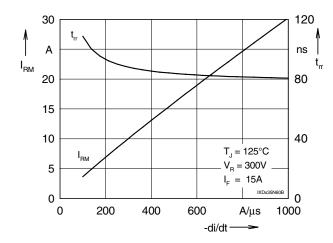


Fig. 6 Typ. turn off characteristics of free wheeling diode

© 2006 IXYS All rights reserved

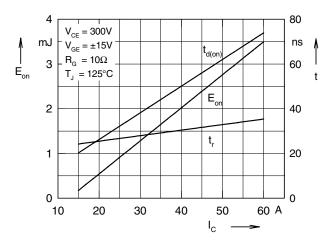


Fig. 7 Typ. turn on energy and switching times versus collector current

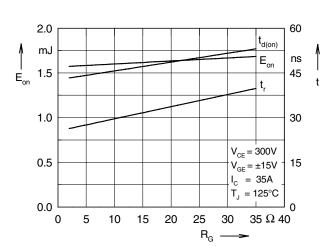


Fig. 9 Typ. turn on energy and switching times versus gate resistor

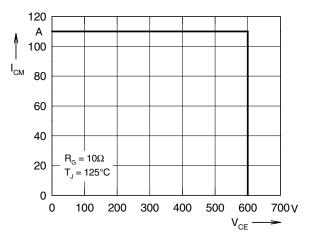


Fig. 11 Reverse biased safe operating area RBSOA

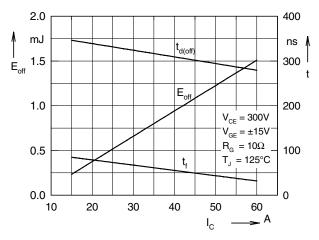


Fig. 8 Typ. turn off energy and switching times versus collector current

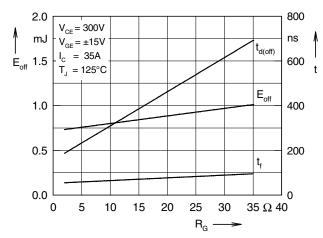


Fig.10 Typ. turn off energy and switching times versus gate resistor

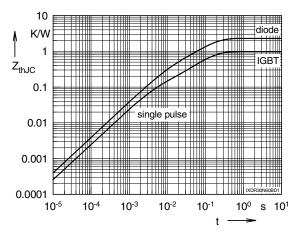


Fig. 12 Typ. transient thermal impedance

© 2006 IXYS All rights reserved