

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HiPerFET™ Power MOSFETs Single Die MOSFET

N-Channel Enhancement Mode Avalanche Rated, High dv/dt, Low t_r


IXFE 39N90

 $V_{DSS} = 900 V$ $I_{D25} = 34 A$ $R_{DS(on)} = 220 m\Omega$ t < ns

Preliminary Data

Symbol	Test Conditions	Maximum	n Ratings
V _{DSS}	$T_J = 25^{\circ}C$ to $150^{\circ}C$	900	V
V_{DGR}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}; R_{GS} = 1 \text{ M}\Omega$	900	V
$\overline{V_{gs}}$	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	T _C = 25°C, Chip capability	34	A
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Note 1	154	Α
I _{AR}	$T_{c} = 25^{\circ}C$	39	А
E _{AR}	T _C = 25°C	64	mJ
E _{as}	$T_{c} = 25^{\circ}C$	4	J
dv/dt	$I_{_{S}} \leq I_{_{DM}}$, di/dt \leq 100 A/ μ s, $V_{_{DD}} \leq V_{_{DSS}}$ $T_{_{J}} \leq 150^{\circ}$ C, $R_{_{G}} = 2~\Omega$	5.	V/ns
$P_{_{\rm D}}$	$T_{c} = 25^{\circ}C$	580	W
T,		-40 +150	°C
T _{JM}		150	°C
T _{stg}		-40 +150	°C
V _{ISOL}	50/60 Hz, RMS $t = 1 \text{ min}$ $I_{ISOL} \le 1 \text{ mA}$ $t = 1 \text{ s}$	2500 3000	V~ V~
M _d	Mounting torque Terminal connection torque		Nm/lb.in. Nm/lb.in.

ISOPLUS 227™ (IXFE)

G = Gate S = Source

D = Drain

Either Source terminal at miniBLOC can be used as Main or Kelvin Source

• Conform

- Conforms to SOT-227B outline
- $\bullet \, \mathsf{Low} \, \, \mathsf{R}_{\mathsf{DS} \, \mathsf{(on)}} \, \, \mathsf{HDMOS^{\mathsf{TM}}} \, \, \mathsf{process}$
- Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
- Fast intrinsic Rectifier

Symbol Test Conditions

Characteristic Values $(T_{\perp} = 25^{\circ}C, \text{ unless otherwise specified})$

		, j	min.	typ.	max.	,
V _{DSS}	$V_{GS} = 0 \text{ V}, I_D = 3 \text{ mA}$		900			V
V _{GH(th)}	$V_{DS} = V_{GS}$, $I_{D} = 8 \text{ mA}$		2.5		5.0	V
I _{GSS}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$				±200	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$			100 2	μA mA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = I_{T}$ Notes 2, 3				220	mΩ

Applications

- DC-DC converters
- Battery chargers
- Switched-mode and resonant-mode power supplies
- DC choppers
- Temperature and lighting controls

Advantages

- Low cost
- Easy to mount
- Space savings
- High power density

Symbol	Test Conditions $(T_{_{\rm J}} = 25^{\circ}{\rm C},$			istic Values se specified) max.
g _{fs}	$V_{DS} = 15 \text{ V}; I_{D} = I_{T}, \text{ Note 2}$	30	45	S
C _{iss})		13400	pF
C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		1230	pF
\mathbf{C}_{rss}	J		320	pF
t _{d(on)})		45	ns
t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = I_{T}$		68	ns
$\mathbf{t}_{d(off)}$	$R_{\rm G} = 1 \Omega$ (External),		125	ns
t _f)		30	ns
Q _{g(on)})		375	nC
\mathbf{Q}_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = I_{T}$		75	nC
\mathbf{Q}_{gd}	J		190	nC
R _{thJC}				0.22 K/W
R_{thCK}			0.07	K/W

Source-Drain Diode			Characteristic Values (T, = 25°C, unless otherwise specified)			
Symbol	Test Conditions	min.	typ.	max.	iicu)	
I _s	V _{GS} = 0 V			39	Α	
I _{SM}	Repetitive; Note 1	5		154	Α	
V _{SD}	$I_F = I_S, V_{GS} = 0 V,$ Note 2			1.3	V	
t _{rr} Q _{RM} I _{RM}	$I_F = 25A$, -di/dt = 100 A/ μ	s, V _R = 100 V	2 9	250	ns μC A	

ISOPLUS-227 B					
CERAMIC DCB 2600V ISOLATION TO TERMINALS					
- J -	1	ØD	À À		
	Y MAIN P 01				
	U			R	
MYZ	INCH	HES MAX	MILLIM	MAX	
A	1.240	1.270	31.50	32.26	
В	.310	.330	7.87	8.38	
Č	.155	.165	3.94	4.19	
D	.155	.165	3.94	4.19	
D1	.150	.157	3.81	3.98	
E	.160	.168	4.06	4.27	
F	.587	.595	14.91	15.11	
G	1.186	1.193	30.12	30.30	
Н	1.489	1.505	37.80	38.23	
J	.465	.481	11,81	12.22	
K	.370	.380	9.40	9.65	
L	.030	.033	0.76	0.84	
М	.496	.506	12.60	12.85	
N	.990	1.001	25.15	25.42	
0	.100	.105	2.54	2.67	
Р	.195	.235	4.95	5.97	
Q	1.045	1.059	26.54	26.90	
R	.160	.170	4.06	4.32	
S	.186	.191	4.72	4.85	
Т	.968	.987	24.59	25.07	
U	001	.002	-0.03	0.05	
V	.130	.160	3.30	4.06	
W	.780	.830	19.81	21.08	
X	.770	.810	19.56	20.57	
Υ	.680	.720	17.27	18.29	
Z	.885	.892	22.48	22.66	

Please see IXFN39N90 data sheet for characteristic curves.

 $\begin{array}{ll} \mbox{Notes:} & \mbox{1. Pulse width limited by $T_{_{JM.}}$} \\ \mbox{2. Pulse test, $t \leq 300$ ms, duty cycle $d \leq 2\%$.} \\ \end{array}$

3. I_{τ} Test current: I_{τ} = 19.5 A