: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Polar3 ${ }^{\text {TM }}$ HiperFET ${ }^{\text {TM }}$ Power MOSFET

N-Channel Enhancement Mode
Avalanche Rated
Fast Intrinsic Rectifier

IXFA26N50P3 IXFP26N50P3 IXFQ26N50P3 IXFH26N50P3

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {DSs }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	500	V
$\mathrm{V}_{\text {DGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$	500	V
$\mathrm{V}_{\text {GSs }}$	Continuous	± 30	V
$\mathrm{V}_{\text {GSM }}$	Transient	± 40	V
$\mathrm{I}_{\mathrm{D} 25}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	26	A
I_{DM}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Pulse Width Limited by T_{JM}	78	A
I_{A}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	13	A
$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	300	mJ
dv/dt	$\mathrm{I}_{\mathrm{S}} \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DSS}}, \mathrm{T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}$	35	V/ns
P_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	500	W
TJ	$-55 \ldots+150 \quad{ }^{\circ} \mathrm{C}$		
T_{JM}	$150 \quad{ }^{\circ} \mathrm{C}$		
$\mathrm{T}_{\text {stg }}$	$-55 \ldots+150{ }^{\circ} \mathrm{C}$		
T_{L}	Maximum Lead Temperature for Soldering Plastic Body for 10s	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {sold }}$		260	${ }^{\circ} \mathrm{C}$
F_{c}	Mounting Force (TO-263) 10..65 / $2.2 . .14 .6$ Mounting Torque (TO-220, TO-3P \& TO-247) $1.13 / 10$		N/lb
M_{d}			Nm/lb.in
Weight	TO-263	2.5	g
	TO-220	3.0	g
	TO-3P	5.5	g
	TO-247	6.0	g

TO-3P (IXFQ)

TO-247 (IXFH)

$$
\mathrm{G}=\text { Gate } \quad \mathrm{D}=\text { Drain }
$$

$$
\mathrm{S}=\text { Source } \quad \mathrm{Tab}=\text { Drain }
$$

Features

- Fast Intrinsic Rectifier
- Avalanche Rated
- Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ and Q_{G}
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode Power Supplies
- DC-DC Converters
- Laser Drivers
- AC and DC Motor Drives
- Robotics and Servo Controls

	- 5			
$\begin{aligned} & \text { Symbol } \quad \text { Test Conditions } \\ & \left(T_{J}=25^{\circ} \mathrm{C} \text {, Unless Otherwise Specified }\right) \end{aligned}$		Characteristic Values		
		Min.	Typ.	Max
$\mathrm{g}_{\text {ts }}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\text {D25 }}$, Note 1	14	23	S
R_{Gi}	Gate Input Resistance		2.1	Ω
$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\mathrm{rss}} \end{aligned}$	\} $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		$\begin{array}{r} 2220 \\ 280 \\ 8 \end{array}$	pF pF pF
$\begin{aligned} & \mathrm{C}_{\mathrm{o}(\mathrm{er})} \\ & \mathrm{C}_{\mathrm{o}(\mathrm{r})} \end{aligned}$	Effective Output Capacitance $\left.\begin{array}{l} \text { Energy related } \\ \text { Time related } \end{array}\right\} \begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0.8 \cdot \mathrm{~V}_{\mathrm{DSS}} \end{aligned}$		$\begin{aligned} & 108 \\ & 185 \end{aligned}$	pF pF
$\begin{aligned} & t_{d_{(0 n)}} \\ & t_{r} \\ & t_{d_{(0 f f)}} \\ & t_{f} \\ & \hline \end{aligned}$	Resistive Switching Times $\begin{aligned} & V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \cdot \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25} \\ & \mathrm{R}_{\mathrm{G}}=3 \Omega \quad \text { (External) } \end{aligned}$		21 7 38 5	ns ns ns ns
$\begin{aligned} & \mathbf{Q}_{\mathrm{g}(0 n)} \\ & \mathbf{Q}_{\mathrm{gs}} \\ & \mathbf{Q}_{\mathrm{gd}} \\ & \hline \end{aligned}$	$\} \quad V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \cdot \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25}$		$\begin{aligned} & 42 \\ & 11 \\ & 15 \end{aligned}$	nC nC nC
$\mathbf{R}_{\text {thuc }}$ $\mathbf{R}_{\text {thcs }}$	$\begin{aligned} & \text { TO-220 } \\ & \text { TO-3P \& TO-247 } \end{aligned}$		$\begin{aligned} & 0.50 \\ & 0.25 \end{aligned}$	$\begin{array}{r} 0.25^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{array}$

Source-Drain Diode

$\begin{aligned} & \text { Symbol Test Conditions } \\ & \left(T_{J}=25^{\circ} \mathrm{C} \text {, Unless Otherwise Specified }\right) \end{aligned}$		Characteristic Values			
		Min.	Typ.	Max	
$\mathrm{I}_{\text {s }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$			26	A
$\underline{I_{\text {SM }}}$	Repetitive, pulse Width Limited by T_{JM}			104	A
$\mathrm{V}_{\text {SD }}$	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{S}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$, Note 1			1.4	V
$\left.\begin{array}{l} \mathbf{t}_{\mathrm{rr}} \\ \mathbf{Q}_{\mathrm{RM}} \\ \mathrm{I}_{\mathrm{RM}} \end{array}\right\}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=13 \mathrm{~A},-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 0.9 \\ 10.2 \end{array}$	250	ns nC A

Note 1. Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle, $\mathrm{d} \leq 2 \%$.

Fig. 1. Output Characteristics @ $\mathrm{T}_{\mathbf{J}}=\mathbf{2 5}^{\circ} \mathrm{C}$

Fig. 3. Output Characteristics @ $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$

Fig. 5. $R_{\mathrm{DS}(o n)}$ Normalized to $\mathrm{I}_{\mathrm{D}}=13 \mathrm{~A}$ Value vs.
Drain Current

Fig. 2. Extended Output Characteristics @ $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Fig. 4. $R_{\mathrm{DS}(o n)}$ Normalized to $\mathrm{I}_{\mathrm{D}}=13 \mathrm{~A}$ Value vs. Junction Temperature

Fig. 6. Maximum Drain Current vs.
Case Temperature

IXFA26N50P3 IXFP26N50P3 IXFQ26N50P3 IXFH26N50P3

Fig. 7. Input Admittance

Fig. 9. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Capacitance

Fig. 8. Transconductance

Fig. 10. Gate Charge

Fig. 12. Output Capacitance Stored Energy

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

IXFA26N50P3 IXFP26N50P3 IXFQ26N50P3 IXFH26N50P3

Fig. 13. Forward-Bias Safe Operating Area

Fig. 14. Maximum Transient Thermal Impedance

GIXYS
IXFA26N50P3 IXFP26N50P3 IXFQ26N50P3 IXFH26N50P3

TO-3P Outline	SYM	INCHES		MILLIMETERS	
$\square \mathrm{E} \longrightarrow \quad \mathrm{A} \rightarrow-\mathrm{P}-1-\mathrm{E}$		MIN	MAX	MIN	MAX
	A	. 181	. 197	4.60	5.00
	A1	. 087	1.02	2.20	2.60
	A2	. 057	. 065	1.45	1.65
	b	. 031	. 047	0.80	1.20
	b2	. 071	. 087	1.80	2.20
	b4	. 110	. 126	2.80	3.20
	c	. 022	. 031	0.55	0.80
	D	. 776	. 791	19.70	20.10
	D1	. 640	. 680	16.26	17.27
	E	. 606	. 622	15.40	15.80
	E1	. 531	. 539	13.50	13.70
	e			5.4	
	L	. 779	. 795	19.80	20.20
	L1	. 130	. 146	3.30	3.70
	$\phi \mathrm{P}$.122	. 134	3.10	3.40
	¢P1	. 272	. 280	6.90	7.10
	S	. 189	. 205	4.80	5.20

