: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Polar ${ }^{\text {TM }}$ Power MOSFET

HiPerFET ${ }^{\text {тм }}$
N-Channel Enhancement Mode Avalanche Rated
Fast Intrinsic Diode

IXFK26N100P
IXFX26N100P

Maximum Ratings

Symbol	Test Conditions		Maximum	tings
$\mathrm{V}_{\text {DSs }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$		1000	V
$\mathrm{V}_{\text {DGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$		1000	V
$\mathrm{V}_{\text {GSs }}$	Continuous		± 30	V
$\mathrm{V}_{\text {GSM }}$	Transient		± 40	V
$\begin{aligned} & \mathrm{I}_{\mathrm{D} 25} \\ & \mathrm{I}_{\mathrm{DM}} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		26	A
	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, pulse width limited by $\mathrm{T}_{\text {JM }}$		65	A
$\begin{aligned} & I_{A R} \\ & E_{A S} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$		13	A
			1	J
dV/dt	$\mathrm{I}_{\mathrm{S}} \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DSS}}, \mathrm{T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}$		15	V / ns
P_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		780	W
$\begin{aligned} & \mathbf{T}_{J} \\ & \mathbf{T}_{J M M} \\ & \mathbf{T}_{\text {stg }} \end{aligned}$			$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
			150	${ }^{\circ} \mathrm{C}$
			$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{T}_{\mathrm{L}} \\ & \mathrm{~T}_{\text {SoLD }} \end{aligned}$	1.6 mm (0.062 in.) from case for 10 s Plastic body for 10s		300	${ }^{\circ} \mathrm{C}$
			260	${ }^{\circ} \mathrm{C}$
M_{d}	Mounting torque	(IXFK)	1.13/10	Nm/lb.in.
F_{c}	Mounting force	(IXFX)	20..120/4.5.. 27	N/lb.
Weight	$\begin{aligned} & \text { TO-264 } \\ & \text { TO-247 } \end{aligned}$		10	g
			6	g

Symbol Test Conditions

$V_{\text {DSs }}$	$=1000 \mathrm{~V}$
$I_{\text {D25 }}$	$=26 \mathrm{~A}$
$R_{\text {DS(on) }}$	$\leq 390 \mathrm{~m} \Omega$
t_{rr}	$\leq 300 \mathrm{~ns}$

TO-264 (IXFK)

PLUS247 (IXFX)

$\begin{array}{ll}G=\text { Gate } & D=\text { Drain } \\ S=\text { Source } & \text { TAB }=\text { Drain }\end{array}$

Features

- Fast intrinsic diode
- International standard packages
- Unclamped Inductive Switching (UIS) rated
- Low package inductance - easy to drive and to protect

Advantages

- Easy to mount
- Space savings
- High power density

Applications:

- Switched-mode and resonant-mode power supplies
- DC-DC Converters
- Laser Drivers
- AC and DC motor controls
- Robotics and servo controls

Symbol Test Conditions ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified)		Characteristic Values			
		Min.	Typ.	Max.	
$\mathrm{g}_{\text {fs }}$	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25}$, Note 1	13	22		S
$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\text {rss }} \end{aligned}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		$\begin{array}{r} 11.9 \\ 690 \\ 60 \end{array}$		nF pF pF
R_{Gi}	Gate input resistance		1.50		Ω
$\begin{aligned} & t_{d(\text { on })} \\ & t_{r} \\ & t_{d(\text { fif })} \\ & t_{f} \end{aligned}$	Resistive Switching Times $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \cdot \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25} \\ & \mathrm{R}_{\mathrm{G}}=1 \Omega \text { (External) } \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \\ & 72 \\ & 50 \end{aligned}$		ns $n \mathrm{n}$ ns ns
$\begin{aligned} & \mathbf{Q}_{\mathrm{g}(\mathrm{on})} \\ & \mathbf{Q}_{\mathrm{gs}} \\ & \mathbf{Q}_{\mathrm{gd}} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \cdot \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25}$		$\begin{array}{r} 197 \\ 76 \\ 85 \end{array}$		nC nC nC
$\begin{aligned} & \mathbf{R}_{\mathrm{thuc}} \\ & \mathbf{R}_{\mathrm{thcs}} \\ & \hline \end{aligned}$			0.15	0.16	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

Source-Drain Diode

Characteristic Values
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Test Conditions	Min.	Typ.	Max.	
$\mathrm{I}_{\text {s }}$	$\mathrm{V}_{\text {GS }}=0 \mathrm{~V}$			26	A
$\mathrm{I}_{\text {SM }}$	Repetitive, pulse width limited by T_{JM}			104	A
$\mathrm{V}_{\text {sD }}$	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{S}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$, Note 1			1.5	V
$\begin{aligned} & \mathbf{t}_{\mathrm{rr}} \\ & \mathbf{Q}_{\mathrm{RM}} \\ & \mathbf{I}_{\mathrm{RM}} \end{aligned}$	$\begin{aligned} & I_{F}=13 \mathrm{~A},-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 1.2 \\ 12 \end{array}$	300	ns $\mu \mathrm{C}$ A

Note 1: Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$; duty cycle, $\mathrm{d} \leq 2 \%$.

TO-264 (IXFK) Outline

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	4.82	5.13	.190	.202
A1	2.54	2.89	.100	.114
A2	2.00	2.10	.079	.083
b	1.12	1.42	.044	.056
b1	2.39	2.69	.094	.106
b2	2.90	3.09	.114	.122
C	0.53	0.83	.021	.033
D	25.91	26.16	1.020	1.030
E	19.81	19.96	.780	.786
e	5.46	BSC	.215	BSC
J	0.00	0.25	.000	.010
K	0.00	0.25	.000	.010
L	20.32	20.83	.800	.820
L1	2.29	2.59	.090	.102
P	3.17	3.66	.125	.144
Q	6.07	6.27	.239	.247
Q1	8.38	8.69	.330	.342
R	3.81	4.32	.150	.170
R1	1.78	2.29	.070	.090
S	6.04	6.30	.238	.248
T	1.57	1.83	.062	.072

PLUS $247^{\text {TM }}$ (IXFX) Outline

Terminals: 1 -Gate
2 - Drain (Collector)
3 - Source (Emitter)
4 - Drain (Collector)

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	4.83	5.21	.190	.205
$\mathrm{~A}_{1}$	2.29	2.54	.090	.100
$\mathrm{~A}_{2}$	1.91	2.16	.075	.085
b	1.14	1.40	.045	.055
$\mathrm{~b}_{1}$	1.91	2.13	.075	.084
$\mathrm{~b}_{2}$	2.92	3.12	.115	.123
C	0.61	0.80	.024	.031
D	20.80	21.34	.819	.840
E	15.75	16.13	.620	.635
e	5.45	BSC	.215	BSC
L	19.81	20.32	.780	.800
L 1	3.81	4.32	.150	.170
Q	5.59	6.20	.220	0.244
R	4.32	4.83	.170	.190

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics @ $25^{\circ} \mathrm{C}$

Fig. 3. Output Characteristics
@ 125ํ.C

Fig. 5. $R_{D S(o n)}$ Normalized to $I_{D}=13 A$ Value vs. Drain Current

Fig. 2. Extended Output Characteristics @ 25́․

Fig. 4. $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ Normalized to $\mathrm{I}_{\mathrm{D}}=13 \mathrm{~A}$ Value vs. Junction Temperature

Fig. 6. Maximum Drain Current vs. Case Temperature

IXFK26N100P IXFX26N100P

Fig. 7. Input Admittance

Fig. 9. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Capacitance

Fig. 8. Transconductance

Fig. 10. Gate Charge

Fig. 12. Maximum Transient Thermal Impedance

IXYS reserves the right to change limits, test conditions, and dimensions.

