: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

HiPerRF ${ }^{\text {TM }}$

Power MOSFETs

F-Class: MegaHertz Switching

N-Channel Enhancement Mode
Avalanche Rated
Low Q_{g}, Low Intrinsic R_{g}
High dV/dt, Low t_{rr}

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {DSs }}$	$\mathrm{T}_{j}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	500 V	
$\mathrm{V}_{\text {DGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$	500 V	
$\mathrm{V}_{\text {Gss }}$	Continuous	$\pm 20 \quad \mathrm{~V}$	
$\mathrm{V}_{\text {GSM }}$	Transient	$\pm 30 \quad \mathrm{~V}$	
$\mathrm{I}_{\mathrm{D} 25}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	55 A	
I_{DM}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Pulse Width Limited by $\mathrm{T}_{\text {JM }}$	220 A	
$\mathrm{I}_{\text {AR }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	55 A	
$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	3 J	
dv/dt	$\begin{aligned} & \mathrm{I}_{\mathrm{S}} \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{di} / \mathrm{dt} \leq 100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{~V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DSS}} \\ & \mathrm{~T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=2 \Omega \end{aligned}$	10	V/ns
P_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	560	W
T_{J}		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{L}	1.6 mm (0.062 in.) from Case for 10 s	300	${ }^{\circ}{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SoLD }}$	Plastic Body for 10s	260	
M_{d}	Mounting Torque (TO-264)	1.13/10	Nm/lb.in.
F_{c}	Mounting Force (PLUS247)	20.. $120 / 4.5 . .27$	N / lb.
Weight	$\begin{aligned} & \hline \text { TO-264 } \\ & \text { PLUS247 } \end{aligned}$	$\begin{array}{r} 10 \\ 6 \end{array}$	g g

$V_{\text {DSs }}=500 \mathrm{~V}$
$\mathrm{I}_{\mathrm{D} 25}=55 \mathrm{~A}$
$\mathrm{R}_{\mathrm{DS}(\mathrm{on})} \leq 85 \mathrm{~m} \Omega$
$\mathrm{t}_{\mathrm{rr}} \leq 250 \mathrm{~ns}$

TO-264 (IXFK)

PLUS247 (IXFX)

$G=$ Gate $\quad D \quad=$ Drain
$S=$ Source $\quad T A B=$ Drain

Features

- RF capable Mosfets
- Rugged polysilicon gate cell structure
- Double metal process for low gate resistance
- Unclamped Inductive Switching (UIS) rated
- Low package inductance - easy to drive and to protect
- Fast intrinsic rectifier

Applications

- DC-DC converters
- Switched-mode and resonant-mode power supplies, $>500 \mathrm{kHz}$ switching
- DC choppers
- Pulse generation
- Laser drivers

Advantages

- PLUS $247^{\text {TM }}$ package for clip or spring mounting
- Space savings
- High power density

Source-Drain Diode

Symbol Test Conditions ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified)		Characteristic Values			
		Min.	Typ.	Max.	
$\mathrm{I}_{\text {s }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$			55	A
$\mathrm{I}_{\text {SM }}$	Repetitive, Pulse Width Limited by TJM			220	A
$\mathrm{v}_{\text {sD }}$	$\mathrm{I}_{\mathrm{F}}=25 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$, Note 1			1.5	
$t_{r r}$ Q_{RM} $I_{\text {BM }}$	$\begin{aligned} & I_{F}=25 \mathrm{~A},-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$		1 10	250	$\begin{aligned} & \text { ns } \\ & \mu \mathrm{C} \end{aligned}$

Note: 1. Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\mathrm{d} \leq 2 \%$
2. See IXFN55N50F Datasheet for Characteristic Curves

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

PLUS 247 ${ }^{\text {TM }}$ (IXFX) Outline

$\begin{array}{ll}\text { Terminals: } & 1 \text { - Gate } \\ & 2-\text { Drain (Collector) } \\ & 3-\text { Source (Emitter) }\end{array}$

	4 - Drain (Collector)			
Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	4.83	5.21	. 190	. 205
A_{1}	2.29	2.54	. 090	. 100
A_{2}	1.91	2.16	. 075	. 085
b	1.14	1.40	. 045	. 055
b_{1}	1.91	2.13	. 075	. 084
b_{2}	2.92	3.12	. 115	. 123
C	0.61	0.80	. 024	. 031
D	20.80	21.34	. 819	. 840
E	15.75	16.13	. 620	. 635
e	5.45	BSC	. 215	BSC
L	19.81	20.32	. 780	. 800
L1	3.81	4.32	. 150	. 170
Q	5.59	6.20	. 220	0.244
R	4.32	4.83	. 170	. 190

4 - Drain (Collector)

Fig. 1. Output Characteristics at $25^{\circ} \mathrm{C}$

Fig. 3. $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs. Drain Current

Fig. 5. Drain Current vs. Case Temperature

Fig. 2. Output Characteristics at $125^{\circ} \mathrm{C}$

Fig. 4. $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs. T_{J}

Fig. 6. Admittance Curves

Fig. 7. Gate Charge Characteristic Curve

Fig. 8. Capacitance Curves

Fig. 9. Source Current vs. Source to Drain Voltage

Fig. 10. Thermal Impedance

