

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

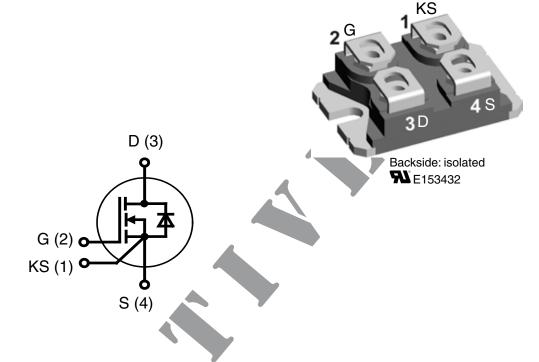
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



SiC Power MOSFET

I_{D25} 48 A = 1200 V V_{DSS} $\mathbf{R}_{\mathrm{DS(on)\;max}}$ = 50 m Ω

Kelvin Source gate connection

Part number IXFN50N120SK

Features / Advantages:

- High speed switching with low capacitances
- High blocking voltage with low R_{DS(on)}
- Easy to parallel and simple to drive
- Resistant to latch-up
- Real Kelvin source connection

Applications:

- Solar inverters
- High voltage DC/DC converters
- Motor drives
- Switch mode power supplies
- UPS
- Battery chargers
- Induction heating

Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate with Aluminium nitride insolation
- Advanced power cycling

Terms & Conditions of usage.
The data contained in this product data, sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you. Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend to perform joint risk and quality assessments:

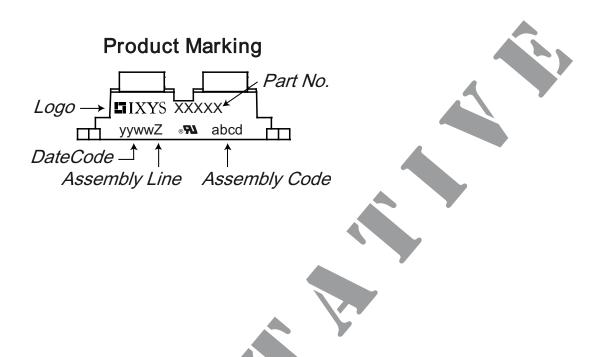
- the conclusion of quality agreements;
 to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, test conditions and dimensions.

20160225

MOSFET			Ratings				
Symbol	Definitions	Conditions		min.	typ.	max.	
V _{DS(max)}	max drain source voltage					1200	V
V _{GS(max)}	max transient gate source voltage continous gate source voltage	recommended operational value		-10 -5		+25 +20	V V
I _{D25} I _{D80} I _{D100}	drain current	V _{GS} = 20 V	$T_{c} = 25^{\circ}C$ $T_{c} = 80^{\circ}C$ $T_{c} = 100^{\circ}C$			48 38 33	A A A
R _{DSon}	static drain source on resistance	$I_D = 40 \text{ A}; V_{GS} = 20 \text{ V}$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 150^{\circ}C$		40 84	52	mΩ mΩ
$V_{GS(th)}$	gate threshold voltage	$I_D = 10 \text{ mA}; V_{GS} = V_{DS}$	$T_{VJ} = 25$ °C $T_{VJ} = 150$ °C	2.4	2.8 2.0	tbd	V
I _{DSS}	drain source leakage current	V _{DS} = 1200 V; V _{GS} = 0 V	$T_{VJ} = 25^{\circ}C$		1	100	μΑ
I _{GSS}	gate source leakage current	$V_{DS} = 0 \text{ V}; V_{GS} = 20 \text{ V}$	$T_{VJ} = 25^{\circ}C$			0.25	μA
R _G	internal gate resistance	f = 1 MHz, V _{AC} = 25 mV			1.8		Ω
C _{iss} C _{oss} C _{rss}	input capacitance output capacitance reverse transfer (Miller) capacitance	V _{DS} = 1000 V; V _{GS} = 0 V; f = 1 MHz	T _{VJ} = 25°C		1895 150 10		pF pF pF
Q _g Q _{gs} Q _{gd}	total gate charge gate source charge gate drain (Miller) charge	$V_{DS} = 800 \text{ V}; I_D = 40 \text{ A}; V_{GS} = -5/20 \text{ V}$	/ T _{VJ} = 25°C		115 28 37		nC nC nC
$\begin{aligned} & t_{d(on)} \\ & t_r \\ & t_{d(off)} \\ & t_f \\ & E_{on} \\ & E_{off} \end{aligned}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse	Inductive switching T Free Wheeling Diode: Body Diode $V_{DS} = 800 \text{ V}; I_D = 40 \text{A}$ $V_{GS} = -5/20 \text{ V}; R_G = 2.5 \Omega \text{ (external)}$					ns ns ns ns mJ mJ
R _{thJC}	thermal resistance junction to case thermal resistance junction to heatsink	with heatsink compound; IXYS test	setup		0.72	0.6	K/W K/W

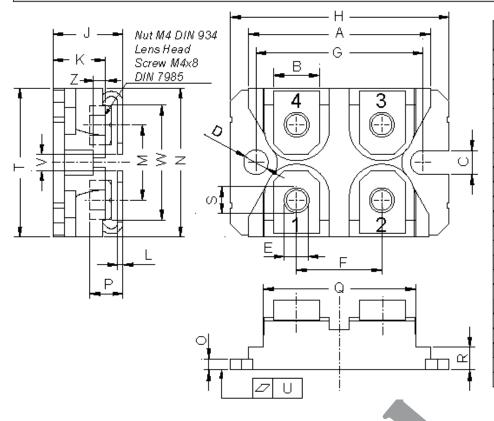
Source-Drain Diode				Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	
I _{S25}	continuous source current	V _{GS} = -5 V	$T_{C} = 25^{\circ}C$ $T_{C} = 80^{\circ}C$				A A
V _{SD}	forward voltage drop	$I_F = 20 \text{ A}; V_{GS} = -5 \text{ V}$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 150^{\circ}C$		3.3 3.1		V V
t _{rr} Q _{RM} I _{RM}	reverse recovery time reverse recovery charge (intrins max. reverse recovery current	$V_0 = 800 \text{ V}^* - \Omega_0 / \Omega_0 = 1000 \text{ A/US}$	$T_{VJ} = 25^{\circ}C$		54 285 15		ns nC A


Note:

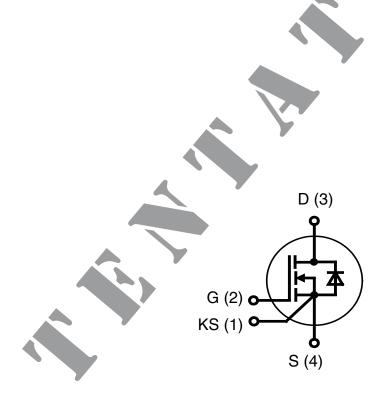
When using SiC Body Diode the maximum recommended $V_{GS} = -5V$



Package SOT-227B (minibloc) **Ratings Symbol Definitions Conditions** min. typ. max. Unit RMS current per terminal Α IRMS $\mathbf{T}_{\mathrm{stg}}$ storage temperature -40 150 °С \mathbf{T}_{op} operation temperature -40 150 $^{\circ}C$ T_{VJ} virtual junction temperature -40 175 $^{\circ}C$ Weight 30 g 1.1 1.5 M_{D} mounting torque Nm M_{T} terminal torque 1.1 1.5 Nm $\mathbf{d}_{\mathsf{Spp/App}}$ 3.2 10.5 / mm terminal to backside creepage distance on surface | striking distance through air 8.6 / 6.8 $d_{\text{Spb/Apb}}$ terminal to terminal mm $I_{ISOL} \leq 1 \text{ mA}$; 50/60 Hz, VISOL isolation voltage t = 1 sec.3000 ٧ 2500 ٧ t = 1 minute



Ord	lering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Sta	ndard	IXFN50N120SK	IXFN50N120SK	Tube	10	517988



Outlines SOT-227B (minibloc)

Dim.	Millimeter		Inches		
DIM.	min	max	min	max	
Α	31.50	31.88	1.240	1.255	
В	7.80	8.20	0.307	0.323	
С	4.09	4.29	0.161	0.169	
D	4.09	4.29	0.161	0.169	
Е	4.09	4.29	0.161	0.169	
F	14.91	15.11	0.587	0.595	
G	30.12	30.30	1.186	1.193	
Н	37.80	38.23	1.488	1.505	
J	11.68	12.22	0.460	0.481	
Κ	8.92	9.60	0.351	0.378	
L	0.74	0.84	0.029	0.033	
M	12.50	13.10	0.492	0.516	
Ν	25.15	25.42	0.990	1.001	
0	1.95	2.13	0.077	0.084	
Р	4.95	6.20	0.195	0.244	
Q	26.54	26.90	1.045	1.059	
R	3.94	4.42	0.155	0.167	
S	4.55	4.85	0.179	0.191	
Т	24.59	25.25	0.968	0.994	
U	-0.05	0.10	-0.002	0.004	
V	3.20	5.50	0.126	0.217	
W	19.81	21.08	0.780	0.830	
Ζ	2.50	2.70	0.098	0.106	

