: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Polar ${ }^{\text {TM }} \mathrm{HiPerFET}^{\text {TM }}$ Power MOSFET

N-Channel Enhancement Mode

Avalanche Rated
Fast Intrinsic Rectifier

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {Dss }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	600	V
$\mathrm{V}_{\text {DGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$	600	V
$\mathrm{V}_{\text {Gss }}$	Continuous	± 30	V
$\mathrm{V}_{\text {GSM }}$	Transient	± 40	V
$\mathrm{I}_{\mathrm{D} 25}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	10	A
$\underline{\mathrm{I}_{\text {M }}}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Pulse Width Limited by T_{JM}	25	A
I_{A}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	10	A
$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	500	mJ
dv/dt	$\mathrm{I}_{\mathrm{S}} \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DSS}}, \mathrm{T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}$	10	V/ns
P_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	200	W
TJ		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{JM}		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{O}$
T_{L}	1.6 mm (0.062in.) from Case for 10 s	300	${ }^{\circ} \mathrm{O}$
$\mathrm{T}_{\text {sold }}$	Plastic Body for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
$M_{\text {d }}$	Mounting Torque (TO-220)	1.13 / 10	Nm/lb.in.
Weight	TO-263	2.5	g
	TO-220	3.0	g

$\mathrm{V}_{\text {oss }}=600 \mathrm{~V}$
$=10 \mathrm{~A}$
≤ 74
≤ 200

TO-263 AA (IXFA)

TO-220AB (IXFP)

$\mathrm{G}=$ Gate $\quad \mathrm{D}=$ Drain

Features

- International Standard Packages
- Dynamic dv/dt Rating
- Avalanche Rated
- Fast Intrinsic Rectifier
- Low Q_{G}
- Low $\mathrm{R}_{\mathrm{DS}(\text { on })}$
- Low Drain-to-Tab Capacitance
- Low Package Inductance

Advantages

- Easy to Mount
- Space Savings

Applications

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- Uninterrupted Power Supplies
- AC Motor Drives
- High Speed Power Switching Applications

Source-Drain Diode

Symbol Test Conditions

($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified)		Min. ${ }^{\text {T }}$ Typ.	Max.	
I_{s}	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$		10	A
$I_{\text {SM }}$	Repetitive, Pulse Width Limited by T_{JM}		30	A
$\mathrm{V}_{\text {SD }}$	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{S}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$, Note 1		1.5	V
$\left.\begin{array}{l} \mathrm{t}_{\mathrm{rr}} \\ \mathrm{I}_{\mathrm{RM}} \\ \mathrm{Q}_{\mathrm{RM}} \end{array}\right\}$	$\begin{aligned} & I_{F}=0.5 \cdot I_{D 25}, V_{G S}=0 V \\ & -d i / d t=100 \mathrm{~A} / \mu \mathrm{S} \\ & V_{R}=100 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 120 \\ 3 \\ 320 \end{array}$	200	ns A nC

Notes: 1. Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle, $\mathrm{d} \leq 2 \%$.
2. On through-hole packages, $\mathrm{R}_{\mathrm{DS}(\text { (n) }}$ Kelvin test contact location must be 5 mm or less from the package body.

TO-263 Outline

SYM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	.160	.190	4.06	4.83
A1	.080	.110	2.03	2.79
b	.020	.039	0.51	0.99
b2	.045	.055	1.14	1.40
c	.016	.029	0.40	0.74
c2	.045	.055	1.14	1.40
D	.340	.380	8.64	9.65
D1	.315	.350	8.00	8.89
E	.380	.410	9.65	10.41
E1	.245	.320	6.22	8.13
e	.100 BSC	2.54 BSC		
L	.575	.625	14.61	15.88
L1	.090	.110	2.29	2.79
L2	.040	.055	1.02	1.40
L3	.050	.070	1.27	1.78
L4	0	.005	0	0.13

TO-220 Outline

SYM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	.170	.190	4.32	4.83
b	.025	.040	0.64	1.02
b1	.045	.065	1.15	1.65
c	.014	.022	0.35	0.56
D	.580	.630	14.73	16.00
E	.390	.420	9.91	10.66
e	.100 BSC		2.54 BSC	
F	.045	.055	1.14	1.40
H1	.230	.270	5.85	6.85
J1	.090	.110	2.29	2.79
k	0	.015	0	0.38
L	.500	.550	12.70	13.97
L1	.110	.230	2.79	5.84
$\varnothing P$.139	.161	3.53	4.08
Q	.100	.125	2.54	3.18

Fig. 1. Output Characteristics $@ \mathrm{~T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Fig. 3. Output Characteristics @ $\mathrm{T}_{\mathbf{J}}=\mathbf{1 2 5}{ }^{\circ} \mathrm{C}$

Fig. 5. $\mathrm{R}_{\mathrm{DS}(o n)}$ Normalized to $\mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}$ Value vs.
Drain Current

Fig. 2. Extended Output Characteristics @ $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Fig. 4. $R_{D S(o n)}$ Normalized to $I_{D}=5 A$ Value vs. Junction Temperature

Fig. 6. Maximum Drain Current vs.
Case Temperature

Fig. 7. Input Admittance

Fig. 9. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Capacitance

Fig. 8. Transconductance

Fig. 10. Gate Charge

Fig. 12. Maximum Transient Thermal Impedance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

