: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

X3-Class HiPerFET ${ }^{\text {M }}$ Power MOSFET

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {DSs }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	250	V
$\mathrm{V}_{\text {DGR }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$	250	V
$\mathrm{V}_{\text {Gss }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GSM }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{D} 25}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	120	A
I_{DM}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Pulse Width Limited by $\mathrm{T}_{\text {JM }}$	230	A
$\mathrm{I}_{\text {A }}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	60	A
$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	1.2	J
dv/dt	$\mathrm{I}_{\mathrm{S}} \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\text {DSS }}, \mathrm{T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}$	20	V/ns
P_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	480	W
T_{J}		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{L}	Maximum Lead Temperature for Soldering	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {sold }}$	1.6 mm (0.062in.) from Case for 10s	260	${ }^{\circ} \mathrm{C}$
M_{d}	Mounting Torque (TO-247 \& TO-3P)	1.13 / 10	Nm/lb.in
Weight	TO-268HV	4.0	g
	TO-3P	5.5	g
	TO-247	6.0	g

Symbol Test Conditions$\left(T_{J}=25^{\circ} \mathrm{C}\right.$, Unless Otherwise Specified)		Characteristic Values		
		Min.	Typ.	Max.
$\mathrm{BV}_{\text {DSs }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	250		V
$\mathrm{V}_{\text {GS(th) }}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}$	2.5		4.5 V
$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			$\pm 100 \mathrm{nA}$
$\mathrm{I}_{\text {DSS }}$	$V_{\text {DS }}=\mathrm{V}_{\text {DSS }}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$			$\begin{array}{r} 10 \mu \mathrm{~A} \\ 500 \mu \mathrm{~A} \end{array}$
$\mathrm{R}_{\text {DS(on) }}$	$V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25}$, Note 1		10	$12 \mathrm{~m} \Omega$

$V_{\text {DSs }}=250 \mathrm{~V}$
$I_{D 25}=120 \mathrm{~A}$
$\mathrm{R}_{\mathrm{DS}(\text { on })}$

TO-268HV (IXFT)

TO-3P (IXFQ)

G = Gate D = Drain
$S=$ Source \quad Tab $=$ Drain

Features

- International Standard Packages
- Low $R_{\text {DS(ON) }}$ and Q_{G}
- Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode

Power Supplies

- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

$\begin{aligned} & \text { Symbol } \quad \text { Test Conditions } \\ & \left(T_{j}=25^{\circ} \mathrm{C}\right. \text {, Unless Otherwise Specified) } \end{aligned}$		Characteristic Values		
		Min.	Typ.	Max
$\mathrm{g}_{\text {fs }}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=60 \mathrm{~A}$, Note 1	54	90	S
$\underline{\mathrm{R}_{\text {Gi }}}$	Gate Input Resistance		1.6	Ω
$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\mathrm{rss}} \end{aligned}$	\} $V_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		$\begin{array}{r} 7870 \\ 1260 \\ 2 \end{array}$	pF pF pF
$\begin{aligned} & \mathrm{C}_{\mathrm{o}(\mathrm{er})} \\ & \mathrm{C}_{\mathrm{o}(\mathrm{r})} \end{aligned}$	Effective Output Capacitance $\left.\begin{array}{l} \text { Energy related } \\ \text { Time related } \end{array}\right\} \begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0.8 \cdot \mathrm{~V}_{\mathrm{DSS}} \end{aligned}$		$\begin{array}{r} 500 \\ 1900 \end{array}$	pF pF
$\begin{aligned} & t_{d(o n)} \\ & t_{r} \\ & t_{d(\text { off })} \\ & t_{f} \\ & \hline \end{aligned}$	Resistive Switching Times $\left\{\begin{array}{l} \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \cdot \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25} \\ \mathrm{R}_{\mathrm{G}}=5 \Omega \text { (External) } \end{array}\right.$		$\begin{array}{r} 29 \\ 32 \\ 100 \\ 12 \end{array}$	ns ns ns ns
$\begin{aligned} & \mathbf{Q}_{\mathrm{g}(\text { on })} \\ & \mathbf{Q}_{\mathrm{gs}} \\ & \mathbf{Q}_{\mathrm{gd}} \end{aligned}$	\} $\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \cdot \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25}$		122 40 34	nC nC nC
$\mathrm{R}_{\mathrm{thJc}}$ $\mathrm{R}_{\mathrm{thcs}}$	TO-247\& TO-3P		0.21	$\begin{array}{r} 0.26^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{array}$

Source-Drain Diode

$\begin{aligned} & \text { Symbol Test Conditions } \\ & \left(T_{j}=25^{\circ} \mathrm{C}\right. \text {, Unless Otherwise Specified) } \end{aligned}$		Characteristic Values			
		Min.	Typ.	Max	
$\mathrm{I}_{\text {s }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$			120	A
$\mathrm{I}_{\text {SM }}$	Repetitive, pulse Width Limited by T_{JM}			480	A
$\mathrm{V}_{\text {sD }}$	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{S}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$, Note 1			1.4	V
$\left.\begin{array}{l} \mathrm{t}_{\mathrm{rr}} \\ \mathrm{Q}_{\mathrm{RM}} \\ \mathrm{I}_{\mathrm{RM}} \end{array}\right\}$	$\begin{aligned} & I_{F}=60 \mathrm{~A},-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 140 \\ 880 \\ 12.6 \\ \hline \end{array}$		ns nC A

Note 1. Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle, $\mathrm{d} \leq 2 \%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Fig. 1. Output Characteristics @ $\mathrm{T}_{\mathbf{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Fig. 3. Output Characteristics @ $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$

Fig. 5. RDS(on) Normalized to $I_{D}=60 \mathrm{~A}$ Value vs.
Drain Curren

Fig. 2. Extended Output Characteristics @ $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Fig. 4. RDS(on) Normalized to $\mathrm{I}_{\mathrm{D}}=60 \mathrm{~A}$ Value vs. Junction Temperature

Fig. 6. Normalized Breakdown \& Threshold Voltages
vs. Junction Temperature

Fig. 7. Maximum Drain Current vs. Case Temperature

Fig. 9. Transconductance

Fig. 11. Gate Charge

Fig. 8. Input Admittance

Fig. 10. Forward Voltage Drop of Intrinsic Diode

Fig. 12. Capacitance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Output Capacitance Stored Energy

Fig. 14. Forward-Bias Safe Operating Area

Fig. 15. Maximum Transient Thermal Impedance

IXFT120N25X3HV IXFQ120N25X3 IXFH120N25X3

TO-268HV Outline

PINS:
1-Gate 2-Source
3 - Drain

SYM	INCHES		MILLIMETER	
	MIN	MAX	MIN	MAX
A	.193	.201	4.90	5.10
A1	.106	.114	2.70	2.90
A2	.001	.010	0.02	0.25
b	.045	.057	1.15	1.45
C	.016	.026	0.40	0.65
C2	.057	.063	1.45	1.60
D	.543	.551	13.80	14.00
D 1	.465	.476	11.80	12.10
D2	.295	.307	7.50	7.80
D3	.114	.126	2.90	3.20
E	.624	.632	15.85	16.05
E1	.524	.535	13.30	13.60
El	.215	BSC	5.45	
BSC				
(e2)	.374	.386	9.50	9.80
H	.736	.752	18.70	19.10
L	.067	.079	1.70	2.00
L2	.039	.045	1.00	

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

