mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LIXYS

HiPerFET[™] Power MOSFETs ISOPLUS247[™] Q CLASS

IXFR 12N100Q 1000 IXFR 10N100Q 1000 V

V _{DSS}	D25	R _{DS(on)}		
00 V	10 A	1.1 Ω		
00 V	9 A	1.20 Ω		

(Electrically Isolated Back Surface)

N-Channel Enhancement Mode Avalanche Rated, High dV/dt Low Gate Charge and Capacitances

0				6s Detieve
Symbol	Test Conditions		viaximum	Ratings
V _{nss}	$T_{1} = 25^{\circ}C \text{ to } 150^{\circ}C$		1000	V
	T_{J}° = 25°C to 150°C; R_{GS} = 1 M Ω		1000	V
V _{GS}	Continuous		±20	V
V _{GSM}	Transient		±30	V
D25	$T_c = 25^{\circ}C$	12N100	10	A
	0	10N100	9	A
DM	$T_{c} = 25^{\circ}C$, Pulse width limited by T_{JM}	12N100	48	Α
		10N100	40	A
AR	$T_c = 25^{\circ}C$	12N100	12	A
		10N100	10	A
E _{AR}	$T_c = 25^{\circ}C$		30	mJ
dv/dt	$ \begin{array}{ll} I_{_S} & \leq I_{_{DM}}, di/dt \leq 100 \text{A}/\mu s, V_{_{DD}} \leq V_{_{DSS}} \\ T_{_J} & \leq 150^\circ C, R_{_G} = 2 \Omega \end{array} $		5	V/ns
P _D	$T_c = 25^{\circ}C$		250	W
Т.		-55	5 +150	°C
Т			150	°C
T _{stg}		-55	5 +150	°C
T _L	1.6 mm (0.063 in.) from case for 10 s		300	°C
	50/60 Hz, RMS t = 1 min		2500	V~
Weight			5	g

Symbol	Test Conditions	Characteristic Values $(T_1 = 25^{\circ}C, \text{ unless otherwise specified})$			
		° min.	typ.	max.	
V _{dss}	$V_{GS} = 0 V, I_{D} = 3mA$	1000			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 4mA$	2.5		5.5	V
I _{GSS}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$			±100	nA
I _{DSS}	$V_{\rm DS} = 0.8 \cdot V_{\rm DSS}$ $V_{\rm GS} = 0 \ V$	$T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$		50 1	μA mA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = \text{ I}_{T}$ Notes 1 & 2	12N100 10N100		1.1 1.2	Ω Ω

ISOPLUS 247™	
G	

Isolated back surface*

G = Gate D = Drain S = Source

D

S

* Patent pending

t_{...} ≤ 300 µs

Features

- Silicon chip on Direct-Copper-Bond substrate
 - High power dissipation
 - Isolated mounting surface
 - 2500V electrical isolation
- Low drain to tab capacitance(<50pF)
- Low R_{DS (on)} HDMOSTM process
- Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS) rated
- Fast intrinsic Rectifier

Applications

- DC-DC converters
- Battery chargers
- Switched-mode and resonant-mode power supplies
- DC choppers
- AC motor control

Advantages

- Easy assembly
- Space savings
- High power density

IXFR 10N100Q IXFR 12N100Q

ISOPLUS 247 OUTLINE

Symbol	Test Conditions	$(T_{J} = 25^{\circ}C, u)$	Ch Inless min.	aracteri otherwis typ.	stic V se spec max.	alues cified)
9 _{fs}	$V_{\text{DS}} = 15 \text{ V}; I_{\text{D}} = I_{\text{T}}$	Note 1	4	10		S
C _{iss})			2900		pF
C _{oss}	$V_{GS} = 0 V, V_{DS} = 25 V$	V, f = 1 MHz		315		pF
C _{rss}	J			50		pF
t _{d(on)})			20		ns
t,	$V_{GS} = 10 \text{ V}, \text{ V}_{DS} = 0.$	$5 \cdot V_{\text{DSS}}, I_{\text{D}} = I_{\text{T}}$		23		ns
t _{d(off)}	$R_{g} = 1 \Omega$ (External)	,		40		ns
t _f	J			15		ns
Q _{g(on)})			90		nC
Q _{gs}	$V_{\rm GS} = 10 \text{ V}, \text{ V}_{\rm DS} = 0.$	$5 \cdot V_{\text{DSS}}, I_{\text{D}} = I_{\text{T}}$		30		nC
Q _{gd}	J			40		nC
R _{thJC}					0.50	K/W
R _{thCK}				0.15		K/W

	INCH	IF S	MILLIN	AFTERS	
SYM	MIN	MAX	MIN	MAX	
A	.190	.205	4.83	5.21	
A1	.090	.100	2.29	2.54	
A2	.075	.085	1.91	2.16	
b	.045	.055	1.14	1.40	
b1	.075	.084	1.91	2.13	
b2	.115	.123	2.92	3.12	
С	.024	.031	0.61	0.80	
D	.819	.840	20.80	21.34	
E	.620	.635	15.75	16.13	
e	.215	BSC	5.45	BSC	
	.780	.800	19.81	20.32	
	.150	1/0	3.81	4.32	
	.22U	.∠44 100	400	6.20	
	520	-170	12 01	4.83	
	-JEU 620	640	15.01	16.26	
	065	.040 080	145	202	
1 – GATE 2 – DRAIN (COLLECTOR) 3 – SOURCE (EMITTER) 4 – NO CONNECTION NOTE: This drawing will meet all dimensions requirement of JEDEC outline TO-247AD					

Source-Drain Diode **Characteristic Values** $(T_{\downarrow} = 25^{\circ}C, \text{ unless otherwise specified})$ Symbol **Test Conditions** min. typ. | max. $V_{GS} = 0 V$ I_s 12 А I_{SM} Repetitive; pulse width limited by T_JM 48 А $\mathbf{V}_{\rm SD}$ V $I_{_F} = I_{_S}, V_{_{GS}} = 0 V, \text{ Note 1}$ 1.3 t_{rr} 200 300 ns $I_{_F} = I_{_S}, \text{-di/dt} = 100 \text{ A/}\mu\text{s}, \text{ V}_{_R} = 100 \text{ V}$ 1.6 μC 7 А l _{RM}

Note: Please see IXFH12N100Q Data Sheet for characteristic curves.

IXYS reserves the right to change limits, test conditions, and dimensions.