: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

GigaMOS ${ }^{\text {TM }}$

Power MOSFET

N-Channel Enhancement Mode
Avalanche Rated
Fast Intrinsic Diode
IXFK170N20T IXFX170N20T

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {DSS }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$	200	V
$\mathrm{V}_{\text {DGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$	200	V
$\mathrm{V}_{\text {GSS }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GSM }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{D} 25}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	170	A
$\mathrm{I}_{\text {L(RMS) }}$	External Lead Current Limit	160	A
I_{DM}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Pulse Width Limited by T_{JM}	470	A
I_{A}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	40	A
$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	3	J
P_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	1150	W
dV/dt	$\mathrm{I}_{\mathrm{S}} \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DSS}}, \mathrm{T}_{\mathrm{J}} \leq 175^{\circ} \mathrm{C}$	20	V / ns
T_{J}		$-55 \ldots+175$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		175	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+175$	${ }^{\circ} \mathrm{C}$
T_{L}	1.6 mm (0.062 in.) from Case for 10 s	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SoLD }}$	Plastic Body for 10s	260	${ }^{\circ} \mathrm{C}$
M ${ }_{\text {d }}$	Mounting Torque (TO-264)	1.13/10	Nm/lb.in.
F_{c}	Mounting Force (PLUS247)	20.. $120 / 4.5 . .27$	N/lb.
Weight	TO-264	10	g
	PLUS247	-	g

$\mathrm{V}_{\text {DSs }}=200 \mathrm{~V}$
$\mathrm{I}_{\mathrm{DS5}}=170 \mathrm{~A}$
$\mathrm{R}_{\mathrm{DS}(\text { (on })} \leq 11 \mathrm{~m} \Omega$
$\mathrm{t}_{\mathrm{rr}} \leq 200 \mathrm{~ns}$

TO-264 (IXFK)

PLUS247 (IXFX)

$G=$ Gate $\quad D=$ Drain $S=$ Source $\quad T A B=$ Drain

Features

- International Standard Packages
- High Current Handling Capability
- Fast Intrinsic Diode
- Avalanche Rated
- Low $\mathrm{R}_{\mathrm{DS}(\text { on })}$

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- Synchronous Recification
- DC-DC Converters
- Battery Chargers
- Switched-Mode and Resonant-Mode Power Supplies
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching Applications

Source-Drain Diode

$\begin{aligned} & \text { Symbol } \quad \text { Test Conditions } \\ & \left(T_{j}=25^{\circ} \mathrm{C}\right. \text {, Unless Otherwise Specified) } \end{aligned}$		Characteristic Values			
		Min.	Typ.	Max.	
I_{s}	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$			170	A
$\mathrm{I}_{\text {SM }}$	Repetitive, Pulse Width Limited by T_{Jm}			680	A
$\mathrm{V}_{\text {sD }}$	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~A}, \mathrm{~V}_{\text {GS }}=0 \mathrm{~V}$, Note 1			1.3	V
$\begin{aligned} & \mathbf{t}_{\mathrm{rr}} \\ & \mathbf{Q}_{\mathrm{RM}} \\ & \mathrm{I}_{\mathrm{RM}} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=80 \mathrm{~A},-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{s} \\ & \mathrm{~V}_{\mathrm{R}}=75 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gs}}=0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.59 \\ & 9.80 \end{aligned}$	200	ns $\mu \mathrm{C}$ A

Note 1: Pulse Test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$; Duty Cycle, $\mathrm{d} \leq 2 \%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-264 (IXFK) Outline

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	4.82	5.13	.190	.202
A1	2.54	2.89	.100	.114
A2	2.00	2.10	.079	.083
b	1.12	1.42	.044	.056
b1	2.39	2.69	.094	.106
b2	2.90	3.09	.114	.122
C	0.53	0.83	.021	.033
D	25.91	26.16	1.020	1.030
E	19.81	19.96	.780	.786
e	5.46	BSC	.215	BSC
J	0.00	0.25	.000	.010
K	0.00	0.25	.000	.010
L	20.32	20.83	.800	.820
L1	2.29	2.59	.090	.102
P	3.17	3.66	.125	.144
Q	6.07	6.27	.239	.247
Q1	8.38	8.69	.330	.342
R	3.81	4.32	.150	.170
R1	1.78	2.29	.070	.090
S	6.04	6.30	.238	.248
T	1.57	1.83	.062	.072

PLUS $247^{\text {TM }}$ (IXFX) Outline

Dim.	Millimeter Min.			
	Max.	Inches Min.		Max.
A	4.83	5.21	.190	.205
$\mathrm{~A}_{1}$	2.29	2.54	.090	.100
$\mathrm{~A}_{2}$	1.91	2.16	.075	.085
b	1.14	1.40	.045	.055
$\mathrm{~b}_{1}$	1.91	2.13	.075	.084
$\mathrm{~b}_{2}$	2.92	3.12	.115	.123
C	0.61	0.80	.024	.031
D	20.80	21.34	.819	.840
E	15.75	16.13	.620	.635
e	5.45	BSC	.215	BSC
L	19.81	20.32	.780	.800
L 1	3.81	4.32	.150	.170
Q	5.59	6.20	.220	0.244
R	4.32	4.83	.170	.190

Fig. 1. Output Characteristics @ 25으․

Fig. 3. Output Characteristics @ 150ํㅡ

Fig. 5. $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ Normalized to $\mathrm{I}_{\mathrm{D}}=85 \mathrm{~A}$ Value vs. Drain Current

Fig. 2. Extended Output Characteristics

@ 25ํㅡ

Fig. 4. $R_{\text {DS(on) }}$ Normalized to $I_{D}=85 A$ Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

IXFK170N20T IXFX170N20T

Fig. 7. Input Admittance

Fig. 9. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Capacitance

Fig. 8. Transconductance

Fig. 10. Gate Charge

Fig. 12. Forward-Bias Safe Operating Area

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Maximum Transient Thermal Impedance

