: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Power MOSFETs

F-Class: MegaHertz Switching

N-Channel Enhancement Mode Avalanche Rated, Low Q_{g}, Low Intrinsic R_{g}, High dV/dt, Low t_{rr}

IXFK21N100F
IXFX21N100F

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {DSs }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	1000 V	
$\mathrm{V}_{\text {DGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$	1000 V	
$\mathrm{V}_{\text {GSs }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GSM }}$	Transient	± 30	V
$\begin{aligned} & \mathrm{I}_{\mathrm{D} 25} \\ & \mathrm{I}_{\mathrm{DM}} \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	21 A	
	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Pulse Width Limited by T_{JM}	84	A
$\begin{aligned} & I_{A} \\ & E_{A S} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{0}=25^{\circ} \mathrm{C}$	21 A	
	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	2.5 J	
dv/dt	$\mathrm{I}_{\mathrm{S}} \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DSS}}, \mathrm{T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}$	10	V/ns
P_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	500	W
T_{J}		$-55 \ldots+150 \quad{ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {JM }}$		$150 \quad{ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+150 \quad{ }^{\circ} \mathrm{C}$	
T_{L}	1.6 mm (0.062 in.) from Case for 10s	$300 \quad{ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {SOLD }}$	Plastic Body for 10s	$260 \quad{ }^{\circ} \mathrm{C}$	
$\mathrm{M}_{\text {d }}$	Mounting Torque (TO-264)	1.13/10	Nm/lb.in.
F_{c}	Mounting Force (PLUS247)	20.. $120 / 4.5 . .27$	N / lb.
Weight	$\begin{aligned} & \text { TO-264 } \\ & \text { PLUS247 } \\ & \hline \end{aligned}$	10	g
		6	g

PLUS247 (IXFX)

$$
G=\text { Gate } \quad D=\text { Drain }
$$

$$
S=\text { Source } \quad T a b=\text { Drain }
$$

Features

- RF Capable MOSFETs
- Double Metal Process for Low Gate Resistive
- Avalanche Rated
- Fast Intrinsic Rectifier

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- DC-DC Converters
- Switch-Mode and Resonant-Mode Power Supplies, >500kHz Switching
- DC Choppers
- 13.5 MHz Industrial Applications
- Pulse Generation
- Laser Drivers
- RF Amplifiers

Source-Drain Diode $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ Unless Otherwise Specified)		Characteristic Values			
		Min.	Typ.	Max.	
$\mathrm{I}_{\text {s }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$			21	A
$\mathrm{I}_{\text {sm }}$	Repetitive, Pulse Width Limited by T_{JM}			84	A
$\mathrm{v}_{\text {so }}$	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{S}}, \mathrm{V}_{\text {GS }}=0 \mathrm{~V}$, Note 1			1.5	V
$\begin{aligned} & \mathrm{t}_{\mathrm{rr}} \\ & \mathrm{Q}_{\mathrm{RM}} \\ & \mathrm{I}_{\mathrm{RM}} \end{aligned}$	$\begin{aligned} & I_{F}=25 \mathrm{~A},-\mathrm{d} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{us} \\ & V_{R}=100 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \end{aligned}$			250	ns $\mu \mathrm{C}$ A

Note: 1. Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\mathrm{d} \leq 2 \%$

