: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

HiPerFAST ${ }^{\text {TM }}$ IGBT

1.6 mm (0.062 in .) from case for 10 s

Symbol \quad Test Conditions$\left(T_{j}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)		Characteristic Values			
		Min.	Typ.	Max.	
$B V_{\text {ces }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$	600			V
$\mathrm{V}_{\mathrm{GE} \text { (th) }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{GE}}$	2.5		5.0	V
$\mathrm{I}_{\text {ces }}$	$\mathrm{V}_{C E}=0.8, \mathrm{~V}_{\text {CES }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		200	$\mu \mathrm{A}$
	$\mathrm{V}_{G E}=0 \mathrm{~V}$	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$		1	mA
$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$			± 100	nA
$\mathrm{V}_{\text {CE(sat) }}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{CE90}}, \mathrm{~V}_{\mathrm{GE}}=15$		2.1	2.7	V

TO-220 AB (IXGP)

G = Gate
C = Collector
E = Emitter \quad TAB $=$ Collector

Features

- Very high freqency IGBT
- New generation HDMOS ${ }^{\text {TM }}$ process
- International standard package JEDEC TO-220AB and TO-263AA
- High peak current handling capability

Applications

- PFC circuits
- AC motor speed control
- DC servo \& robot drives
- Switch-mode and resonant-mode power supplies
- High power audio amplifiers

Advantages

- Fast switching speed
- High power density

Min. Recommended Footprint
(Dimensions in inches and mm)

	L-0.70 (17.18) -

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	4.06	4.83	.160	.190
A1	2.03	2.79	.080	.110
b	0.51	0.99	.020	.039
b2	1.14	1.40	.045	.055
c	0.46	0.74	.018	.029
c2	1.14	1.40	.045	.055
D	8.64	9.65	.340	.380
D1	7.11	8.13	.280	.320
E	9.65	10.29	.380	.405
E1	6.86	8.13	.270	.320
e	2.54	BSC	.100	BSC
L	14.61	15.88	.575	.625
L1	2.29	2.79	.090	.110
L2	1.02	1.40	.040	.055
L3	1.27	1.78	.050	.070
L4	0	0.38	0	.015
R	0.46	0.74	.018	.029

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETS and IGBTs are covered by one or more of the following U.S. patents:	4,835,592	4,881,106	5,017,508	5,049,961	5,187,117	5,486,715	6,306,728B1
	4,850,072	4,931,844	5,034,796	5,063,307	5,237,481	5,381,025	

IXGA12N60C
IXGP12N60C

Fig. 1. Saturation Voltage Characteristics

Fig. 3. Saturation Voltage Characteristics

Fig. 5. Saturation Voltage Characteristics

Fig. 2. Extended Output Characteristics

Fig. 4. Temperature Dependence of $\mathrm{V}_{\text {CE(sat) }}$

Fig. 6. Junction Capacitance Curves

Fig. 7. Dependence of E_{ON} and $\mathrm{E}_{\text {OFF }}$ on I_{C}.

Fig. 9. Gate Charge

Fig. 8. Dependence of E_{ON} and $\mathrm{E}_{\text {OFF }}$ on R_{G}.

Fig. 10. Turn-off Safe Operating Area

Fig. 11. Transient Thermal Resistance

