: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Low $\mathrm{V}_{\mathrm{cE}(\text { sat })}$ IGBT
 High Speed IGBT

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {ces }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	1000	V
$V_{\text {cGR }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GE}}=1 \mathrm{M} \Omega$	1000	V
$\mathrm{V}_{\text {GES }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GEM }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{C} 25}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	24	A
$\mathrm{I}_{\mathrm{c} 90}$	$\mathrm{T}_{\mathrm{c}}=90^{\circ} \mathrm{C}$	12	A
I_{CM}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}, 1 \mathrm{~ms}$	48	A
SSOA (RBSOA)	$\begin{aligned} & \mathrm{V}_{\mathrm{GG}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=150 \Omega \\ & \text { Clamped inductive load, } \mathrm{L}=300 \mu \mathrm{H} \end{aligned}$	$\begin{array}{r} \mathrm{l}_{\mathrm{CM}}=24 \\ @ 0.8 \mathrm{~V}_{\text {CES }} \end{array}$	A
P_{c}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	100	W
T,		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		-55 ... +150	${ }^{\circ} \mathrm{C}$
M_{d}	Mounting torque (M3)	1.13/10	Nm/lb.in.
Weight		6	9
Maximum 1.6 mm (0.	d temperature for soldering 2 in .) from case for 10 s	300	${ }^{\circ} \mathrm{C}$

Symbol	Test Conditions	Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)		
		Min.	Typ.	Max.
$B V_{\text {cEs }}$	$\mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$ $B V_{\text {CES }}$ temperature coefficient	t 1000	0.072	\%/K
$\mathrm{V}_{\text {GE(th) }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{GE}} \\ & \mathrm{~V}_{\mathrm{GE}(\mathrm{th})} \text { temperature coefficient } \end{aligned}$	2.5	-0.192	$\begin{array}{cr} 5.5 & \mathrm{~V} \\ & \% / \mathrm{K} \end{array}$
$\mathrm{I}_{\text {ces }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CES}} \\ & \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{j}=125^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{rc} 250 & \mu \mathrm{~A} \\ 1 & \mathrm{~mA} \end{array}$
$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$			± 100 nA
$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$	$\begin{array}{r} \text { 12N100 } \\ \text { 12N100A } \end{array}$		$\begin{array}{ll} \hline 3.5 & \mathrm{~V} \\ 4.0 & \mathrm{~V} \end{array}$

$\mathrm{V}_{\text {CES }}$	$\mathrm{I}_{\mathrm{C} 25}$	$\mathrm{~V}_{\text {CE(sat) }}$
1000 V	24 A	3.5 V
1000 V	24 A	4.0 V

TO-247AD

$G=$ Gate	$C=$ Collector
$E=$ Emitter	TAB $=$ Collector

Features

- International standard package JEDEC TO-247 AD
- 2nd generation HDMOS ${ }^{\text {TM }}$ process
- Low $\mathrm{V}_{\text {CE(sat) }}$
- for low on-state conduction losses
- High current handling capability
- MOS Gate turn-on
drive simplicity
- Voltage rating guaranteed at high temperature $\left(125^{\circ} \mathrm{C}\right)$

Applications

- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies

Advantages

- Easy to mount with 1 screw (isolated mounting screw hole)
- High power density

Symbol
Test Conditions

IXGH12N100/A characteristic curves may be found in the IXGH12N100U/AU1 data sheet.

TO-247 AD (IXGH) Outline

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	19.81	20.32	0.780	0.800
B	20.80	21.46	0.819	0.845
C	15.75	16.26	0.610	0.640
D	3.55	3.65	0.140	0.144
E	4.32	5.49	0.170	0.216
F	5.4	6.2	0.212	0.244
G	1.65	2.13	0.065	0.084
H	-	4.5	-	0.177
J	1.0	1.4	0.040	0.055
K	10.8	11.0	0.426	0.433
L	4.7	5.3	0.185	0.209
M	0.4	0.8	0.016	0.031
N	1.5	2.49	0.087	0.102

