: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Low $\mathrm{V}_{\mathrm{CE}(\text { sat) }}$ IGBT with Diode
 High speed IGBT with Diode

IXGH 17 N100U1 IXGH 17 N100AU1

$\mathrm{V}_{\text {CES }}$	$\mathrm{I}_{\text {C25 }}$	$\mathrm{V}_{\text {CE(sat) }}$
1000 V	34 A	3.5 V
1000 V	34 A	4.0 V

Combi Packs

Symbol	Test Conditions	Maximum	Ratings
$\mathrm{V}_{\text {ces }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	1000	V
$\mathrm{V}_{\text {cGr }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\text {GE }}=1 \mathrm{M} \Omega$	1000	V
$\mathrm{V}_{\text {GES }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GEM }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{c} 25}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	34	A
$\mathrm{I}_{\text {c90 }}$	$\mathrm{T}_{\mathrm{c}}=90^{\circ} \mathrm{C}$	17	A
$\mathrm{I}_{\text {cm }}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}, 1 \mathrm{~ms}$	68	A
$\begin{aligned} & \text { SSOA } \\ & \text { (RBSOA) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{VV}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=82 \Omega \\ & \text { Clamped inductive load, } \mathrm{L}=100 \mu \mathrm{H} \end{aligned}$	$\begin{array}{r} \mathrm{I}_{\mathrm{CM}}=34 \\ @ 0.8 \mathrm{~V}_{\mathrm{CES}} \\ \hline \end{array}$	A
P_{c}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	150	W
T_{J}		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{Jm}		150	${ }^{\circ} \mathrm{C}$
$\underline{T_{\text {stg }}}$		-55 ... +150	${ }^{\circ} \mathrm{C}$
M_{d}	Mounting torque (M3)	1.13/10	Nm/lb.in.
Weight		6	g
Maximum lead temperature for soldering 1.6 mm (0.062 in .) from case for 10 s		300	${ }^{\circ} \mathrm{C}$

Symbol	Test Conditions	Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)			
		min.	typ.	max.	
$B V_{\text {ces }}$	$\mathrm{I}_{\mathrm{C}}=4.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$	1000			V
$\mathrm{V}_{\text {GE(th) }}$	$\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}$	2.5		5.5	V
$\mathrm{I}_{\text {CES }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=0.8 \cdot \mathrm{~V}_{\mathrm{CES}} \\ & \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$		500	$\mu \mathrm{A}$
				8	mA
$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$			± 100	nA
$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$	$\begin{aligned} & \text { 17N100U1 } \\ & \text { 17N100AU1 } \end{aligned}$		3.5	V
				4.0	V

TO-247 AD

$\mathrm{G}=$ Gate,
C = Collector, TAB $=$ Collector

Features

- International standard package JEDEC TO-247 AD
- IGBT and anti-parallel FRED in one package
- 2nd generation $\mathrm{HDMOS}^{\top M}$ process
- Low $\mathrm{V}_{\mathrm{CE}(\text { sat })}$
- for minimum on-state conduction losses
- MOS Gate turn-on
- drive simplicity
- Fast Recovery Epitaxial Diode (FRED)
- soft recovery with low $I_{\text {RM }}$

Applications

- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies

Advantages

- Saves space (two devices in one package)
- Easy to mount (isolated mounting screw hole)
- Reduces assembly time and cost

Reverse Diode (FRED)

Characteristic Values ($\mathrm{T}_{j}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Fig. 1 Saturation Characteristics

Fig. 3 Collector-Emitter Voltage vs. Gate-Emitter Voltage

Fig. 5 Input Admittance

Fig. 2 Output Characterstics

Fig. 4 Temperature Dependence of Output Saturation Voltage

Fig. 6 Temperature Dependence of Breakdown and Threshold Voltage

Fig. 7 Gate Charge

Fig. 9 Capacitance Curves

Fig. 10 Transient Thermal Impedance

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETS and IGBTs are covered by one or more of the following U.S. patents:	$4,835,592$	$4,881,106$	$5,017,508$	$5,049,961$	$5,187,117$
$4,850,072$	$4,931,844$	$5,034,796$	$5,063,307$	$5,237,481$	$5,381,025$

Fig. 11 Maximum Forward Voltage Drop

Fig.13 Junction Temperature Dependence

Fig. 15 Peak Reverse Recovery Current

Fig. 12 Peak Forward Voltage V_{FR} and Forward Recovery Time $t_{\text {FR }}$

Fig. 14 Reverse Recovery Chargee

Fig. 16 Reverse Recovery Time

Fig. 17 Diode Transient Thermal resistance junction to case

