: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

HiPerFAST ${ }^{\text {M }}$ IGBT with Diode

Combi Pack

Symbol	Test Conditions	$\stackrel{G}{\circ}$ Maximum	Ratings
$\mathrm{V}_{\text {CES }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	600	V
$\mathrm{V}_{\text {cGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{G E}=1 \mathrm{M} \Omega$	600	V
$\mathrm{V}_{\text {GES }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GEM }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{c} 25}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	48	A
$\mathrm{I}_{\mathrm{c} 90}$	$\mathrm{T}_{\mathrm{c}}=90^{\circ} \mathrm{C}$	24	A
$\mathrm{I}_{\text {cm }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 1 \mathrm{~ms}$	96	A
$\begin{aligned} & \text { SSOA } \\ & \text { (RBSOA) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GI}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{V}=}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=22 \Omega \\ & \text { Clamped inductive load, } \mathrm{L}=100 \mu \mathrm{H} \end{aligned}$	$\mathrm{I}_{\mathrm{CM}}=48$ @ $0.8 \mathrm{~V}_{\mathrm{CES}}$	A
P_{c}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	150	W
T ${ }_{\text {J }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		-55 ... +150	${ }^{\circ} \mathrm{C}$
Maximum Lead and Tab temperature for soldering 1.6 mm (0.062 in .) from case for 10 s		300	${ }^{\circ} \mathrm{C}$
$M_{\text {d }}$	Mounting torque, TO-247 AD	1.13/10	Nm/lb.in.
Weight	TO-247 SMD	4	g
	TO-247 AD	6	g

Symbol	Test Conditions	Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)			
BV ${ }_{\text {ces }}$	$\mathrm{I}_{\mathrm{C}}=750 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$	600			V
$\mathrm{V}_{\text {GE(th) }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}$	2.5		5.5	V
$\mathrm{I}_{\text {CES }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=0.8 \cdot \mathrm{~V}_{\mathrm{CES}} \\ & \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{r} 500 \\ 8 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$			± 100	$n A$
$\mathrm{V}_{\text {CE(sat) }}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$			2.7	V

IXGH 24N60AU1 $\mathrm{V}_{\text {CES }}=600 \mathrm{~V}$ IXGH 24N60AU1S $I_{\text {C25 }}=48 \mathrm{~A}$
$\mathbf{V}_{\mathrm{C} 25}=2.7 \mathrm{~V}$
$\mathbf{t}_{\mathrm{fi}}=275 \mathrm{~ns}$

TO-247 AD (24N60AU1)

Features

- International standard packages JEDEC TO-247 SMD surface mountable and JEDEC TO-247 AD
- IGBT and anti-parallel FRED in one package
- 2nd generation $\mathrm{HDMOS}^{\text {TM }}$ process
- Low $\mathrm{V}_{\mathrm{CE}(\text { sat })}$
- for minimum on-state conduction losses
- MOS Gate turn-on - drive simplicity
- Fast Recovery Epitaxial Diode (FRED)
- soft recovery with low $I_{\text {RM }}$

Applications

- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies

Advantages

- Space savings (two devices in one package)
- Easy to mount with 1 screw, TO-247 (isolated mounting screw hole)
- Reduces assembly time and cost

Symbol

Test Conditions
Characteristic Values ($T_{j}=25^{\circ} \mathrm{C}$, unless otherwise specified) min. ${ }^{\text {typ. }}$ max.

$\mathrm{g}_{\text {fs }}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 90} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V},$ Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$	9	13	S
$\begin{aligned} & \mathbf{C}_{\text {ies }} \\ & \mathbf{C}_{\text {oes }} \\ & \mathbf{C}_{\text {res }} \end{aligned}$	\} $\mathrm{V}_{\mathrm{CE}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		$\begin{array}{r} 1500 \\ 175 \\ 40 \end{array}$	pF pF pF
$\begin{aligned} & \mathbf{Q}_{\mathrm{g}} \\ & \mathbf{Q}_{\mathrm{ge}} \\ & \mathbf{Q}_{\mathrm{gc}} \\ & \hline \end{aligned}$	$\} \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0.5 \mathrm{~V}_{\mathrm{CES}}$		90 11 30	$\begin{array}{rl} 120 & \mathrm{nC} \\ 15 & \mathrm{nC} \\ 40 & \mathrm{nC} \end{array}$
$t_{\text {d(on) }}$ $t_{\text {ri }}$ $E_{\text {on }}$ $t_{\text {d(off) }}$ $t_{\text {fii }}$ $E_{\text {off }}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ $\begin{aligned} & I_{\mathrm{C}}=\mathrm{I}_{\mathrm{Cg} 9}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~L}=100 \mu \mathrm{H}, \\ & \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CES}}, \mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\text {off }}=10 \Omega \end{aligned}$ Remarks: Switching times may increase for $\mathrm{V}_{\text {CE }}($ Clamp $)>0.8 \cdot \mathrm{~V}_{\text {CES }}$, higher T_{J} or increased R_{G}		$\begin{array}{r} 25 \\ 15 \\ 0.6 \\ 150 \\ 110 \\ 1.5 \end{array}$	 ns ns mJ 200 ns 270 ns mJ
$t_{\text {don) }}$ $\mathbf{t}_{\text {tir }}$ $E_{\text {on }}$ $t_{\text {d(off) }}$ $t_{\text {fii }}$ $E_{\text {off }}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ $\begin{aligned} & I_{C}=I_{C 90}, V_{G E}=15 \mathrm{~V}, \mathrm{~L}=100 \mu \mathrm{H} \\ & \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CES}}, \mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\text {off }}=10 \Omega \end{aligned}$ Remarks: Switching times may increase for V_{CE} (Clamp) $>0.8 \cdot \mathrm{~V}_{\mathrm{CES}}$, higher T_{J} or increased R_{G}		$\begin{array}{r} \hline 25 \\ 15 \\ 0.8 \\ 250 \\ 400 \\ 2.3 \end{array}$	ns ns mJ ns ns mJ
$\begin{aligned} & \mathbf{R}_{\mathrm{thJc}} \\ & \mathbf{R}_{\mathrm{thck}} \end{aligned}$			0.25	$\begin{array}{r} 0.83 \mathrm{~K} / \mathrm{W} \\ \text { K/W } \end{array}$

Reverse Diode (FRED)
Characteristic Values
($T_{j}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Test Conditions min.	typ.	max.
V_{F}	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{C} 90}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V},$ Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\mathrm{d} \leq 2 \%$		1.6 V
$\begin{aligned} & \mathrm{I}_{\mathrm{RM}} \\ & \mathrm{t}_{\mathrm{rr}} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V},-\mathrm{di} / \mathrm{dt}=240 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{R}}=360 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} ;-\mathrm{di} / \mathrm{dt}=125^{\circ} \mathrm{C} \\ & \hline 100 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{V}_{\mathrm{R}}=30 \mathrm{VT}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} 10 \\ 150 \\ 35 \end{array}$	
$\mathbf{R}_{\text {thJc }}$			$1 \mathrm{~K} / \mathrm{W}$

Min. Recommended Footprint (Dimensions in inches and (mm))

TO-247 AD Outline

Dim.	Millimeter Min.		Inches Min.	
	Max.			
A_{1}	4.7	5.3	.185	.209
$\mathrm{~A}_{1}$	2.2	2.54	.087	.102
$\mathrm{~A}_{2}$	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
$\mathrm{~b}_{1}$	1.65	2.13	.065	.084
$\mathrm{~b}_{2}$	2.87	3.12	.113	.123
C	.4	.8	.016	.031
D	20.80	21.46	.819	.845
E	15.75	16.26	.610	.640
e	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L 1		4.50		.177
$\varnothing \mathrm{P}$	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

TO-247 SMD Outline

1. Gate
2. Collector

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	4.83	5.21	.190	.205
A1	2.29	2.54	.090	.100
A2	1.91	2.16	.075	.085
b	1.14	1.40	.045	.055
b1	1.91	2.13	.075	.084
C	0.61	0.80	.024	.031
D	20.80	21.34	.819	.840
E	15.75	16.13	.620	.635
e	5.45	BSC	.215	BSC
L	4.90	5.10	.193	.201
L1	2.70	2.90	.106	.114
L2	2.10	2.30	.083	.091
L3	0.00	0.10	.00	.004
L4	1.90	2.10	.075	.083
ØP	3.55	3.65	.140	.144
Q	5.59	6.20	.220	.244
R	4.32	4.83	.170	.190
S	6.15	BSC	.242	BSC

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1 Saturation Characteristics

Fig. 3 Collector-Emitter Voltage
vs. Gate-Emitter Voltage

Fig. 5 Input Admittance

Fig. 2 Output Characterstics

Fig. 4 Temperature Dependence of Output Saturation Voltage

Fig. 6 Temperature Dependence of Breakdown and Threshold Voltage

Fig. 7 Turn-Off Energy per Pulse and Fall Time on Collector Current

Fig. 9 Gate Charge Characteristic Curve

Fig. 8 Dependence of Turn-Off Energy Per Pulse and Fall Time on R_{G}

Fig. 10 Turn-Off Safe Operating Area

Fig. 11 Transient Thermal Impedance

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 12 Maximum Forward Voltage Drop

Fig. 14 Junction Temperature Dependence off $I_{\text {RM }}$ and Q_{r}

Fig. 16 Peak Reverse Recovery Current

Fig. 13 Peak Forward Voltage V_{FR} and Forward Recovery Time $t_{\text {FR }}$

Fig. 15 Reverse Recovery Chargee

Fig. 17 Reverse Recovery Time

Fig. 17 Diode Transient Thermal resistance junction to case

IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS MOSFETS and IGBTs are covered by one or more of the following U.S. patents:

