: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

HiPerFAST ${ }^{\text {TM }}$ IGBT

IXGH 24N60B

Preliminary Data			
Symbol	Test Conditions	Maximum	Ratings
$\mathrm{V}_{\text {CES }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	600	V
$\mathrm{V}_{\mathrm{cGR}}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GE}}=1 \mathrm{M} \Omega$	600	V
$\mathrm{V}_{\text {GES }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GEM }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{c} 25}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	48	A
$\mathrm{I}_{\text {c90 }}$	$\mathrm{T}_{\mathrm{c}}=90^{\circ} \mathrm{C}$	24	A
$\mathrm{I}_{\text {cm }}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}, 1 \mathrm{~ms}$	96	A
$\begin{aligned} & \text { SSOA } \\ & \text { (RBSOA) } \end{aligned}$	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=22 \Omega$ Clamped inductive load	$\mathrm{I}_{\mathrm{CM}}=48$ $@ 0.8 \mathrm{~V}_{\text {CES }}$	A
P_{c}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	150	W
T_{J}		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
Maximum lead temperature for soldering 1.6 mm (0.062 in .) from case for 10 s		300	${ }^{\circ} \mathrm{C}$
$M_{\text {d }}$	Mounting torque (M3)	1.13/10	Nm/lb.in.
Weight		6	g

Symbol	Test Conditions	Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified) min. ${ }^{\text {typ. }}$ max.		
$\begin{aligned} & \mathrm{BV}_{\mathrm{CES}} \\ & \mathbf{V}_{\mathrm{GE}(\mathrm{~h})} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{G E}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}} \end{aligned}$	$\begin{array}{r} 600 \\ 2.5 \end{array}$		5.5 V
$\mathrm{I}_{\text {ces }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=0.8 \cdot \mathrm{~V}_{\mathrm{CES}} \\ & \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{rl} 200 & \mu \mathrm{~A} \\ 1 & \mathrm{~mA} \end{array}$
$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$			$\pm 100 \mathrm{nA}$
$\mathrm{V}_{\text {CE(sat) }}$	$\mathrm{I}_{\mathrm{C}} \quad=\mathrm{I}_{\text {C90 }}, \mathrm{V}_{\text {GE }}=15 \mathrm{~V}$			2.3 V

TO-247 AD

$\mathrm{G}=$ Gate, $\quad \mathrm{C}=$ Collector, $E=$ Emitter,$\quad T A B=$ Collector

Features

- International standard packages JEDEC TO-247 SMD surface mountable and JEDEC TO-247 AD
- High frequency IGBT
- High current handling capability
- 3rd generation $\mathrm{HDMOS}^{\text {TM }}$ process
- MOS Gate turn-on
- drive simplicity

Applications

- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies

Advantages

- High power density
- Switching speed for high frequency applications
- Easy to mount with 1 screw (insulated mounting screw hole)

Symbol

Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified) min. typ. $^{\text {ty }}$ max.

Min. Recommended Footprint (Dimensions in inches and (mm))

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1. Saturation Voltage Characteristics

Fig. 3. Saturation Voltage Characteristics

Fig. 5. Admittance Curves

Fig. 2. Extended Output Characteristics

Fig. 4. Temperature Dependence of $\mathrm{V}_{\mathrm{CE}(\text { sat })}$

Fig. 6. Temperature Dependence of $B V_{D S S} \& V_{G E(\mathrm{~h})}$

Fig. 7. Dependence of tfi and $E_{\text {off }}$ on I_{C}.

Fig. 9. Gate Charge

Fig. 8. Dependence of tfi and $E_{\text {OFF }}$ on R_{G}.

Fig. 10. Turn-off Safe Operating Area

Fig. 11. Transient Thermal Resistance
IXYS reserves the right to change limits, test conditions, and dimensions.

