## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

## HiPerFAST™ IGBT <br> with Diode Combi Pack



| Symbol | Test Conditions | Maximu | Ratings |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {ces }}$ | $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ | 600 | V |
| $\mathrm{V}_{\text {cGR }}$ | $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\text {GE }}=1 \mathrm{M} \Omega$ | 600 | V |
| $\mathrm{V}_{\text {GES }}$ | Continuous | $\pm 20$ | V |
| $V_{\text {GEM }}$ | Transient | $\pm 30$ | V |
| $\mathrm{I}_{\mathrm{C} 25}$ | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 60 | A |
| $\mathrm{I}_{\mathrm{c} 90}$ | $\mathrm{T}_{\mathrm{C}}=90^{\circ} \mathrm{C}$ | 32 | A |
| ${ }_{\text {I }}^{\text {cm }}$ | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 1 \mathrm{~ms}$ | 120 | A |
| $\begin{aligned} & \text { SSOA } \\ & \text { (RBSOA) } \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=33 \Omega \\ & \text { Clamped inductive load, } \mathrm{L}=100 \mu \mathrm{H} \end{aligned}$ | $\begin{array}{r} \mathrm{I}_{\mathrm{CM}}=64 \\ @ 0.8 \mathrm{~V}_{\mathrm{CES}} \end{array}$ | A |
| $\mathrm{P}_{\mathrm{c}}$ | $\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$ | 200 | W |
| $\mathrm{T}_{\mathrm{J}}$ |  | $-55 \ldots+150$ | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{JM}}$ |  | 150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {stg }}$ |  | -55 ... +150 | ${ }^{\circ} \mathrm{C}$ |
| $\begin{aligned} & \text { Maximum } \\ & 1.6 \mathrm{~mm}(0 . \end{aligned}$ | ad and Tab temperature for soldering 62 in.) from case for 10 s | 300 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{M}_{\mathrm{d}}$ | Mounting torque, TO-247 AD | 1.13/10 | Nm/lb.in. |
| Weight | TO-247 SMD | 4 | g |
|  | TO-247 AD | 6 | g |


| Symbol | Test Conditions | Characteristic Values ( $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | min. | typ. | max. |  |
| $\mathrm{BV}_{\text {ces }}$ | $\mathrm{I}_{\mathrm{C}}=750 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$ | 600 |  |  | V |
| $\mathrm{V}_{\text {GE(th) }}$ | $\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {GE }}$ | 2.5 |  | 5.5 | V |
| $\mathrm{I}_{\text {ces }}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=0.8 \cdot \mathrm{~V}_{\mathrm{CES}} \\ & \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{J}=125^{\circ} \mathrm{C} \end{aligned}$ |  | 500 8 | $\mu \mathrm{A}$ $\mathrm{mA}$ |
| $\mathrm{I}_{\text {GES }}$ | $\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$ |  |  | $\pm 100$ | nA |
| $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ | $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$ |  |  | 2.9 | V |

$$
\begin{aligned}
\mathrm{V}_{\mathrm{CES}} & =600 \mathrm{~V} \\
\mathrm{I}_{\mathrm{C} 25} & =60 \mathrm{~A} \\
\mathrm{~V}_{\mathrm{CE}(\text { (sat) })} & =2.9 \mathrm{~V} \\
\mathrm{t}_{\mathrm{fi}} & =125 \mathrm{~ns}
\end{aligned}
$$

TO-247 SMD (32N60AU1S)


$$
\begin{array}{ll}
\mathrm{G}=\text { Gate } & \mathrm{C}=\text { Collector } \\
\mathrm{E}=\text { Emitter } & \mathrm{TAB}=\text { Collector }
\end{array}
$$

## Features

- International standard packages JEDEC TO-247 SMD surface mountable and JEDEC TO-247 AD
- High frequency IGBT and antiparallel FRED in one package
- High current handling capability
- 2nd generation HDMOS ${ }^{\text {TM }}$ process
- MOS Gate turn-on
- drive simplicity


## Applications

- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies


## Advantages

- Space savings (two devices in one package)
- High power density
- Suitable for surface mounting
- Switching speed for high frequency applications
- Easy to mount with 1 screw, TO-247 (isolated mounting screw hole)

Symbol
Test Conditions
Characteristic Values

( $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified) min. | typ. | max. |
| :--- | :--- |

|  | min. | typ. | max. |
| :---: | :---: | :---: | :---: |
| $\mathrm{g}_{\text {fs }}$ | $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 90} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$, $15$ <br> Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$ | 20 | S |
| $\begin{aligned} & \mathrm{C}_{\text {ies }} \\ & \mathrm{C}_{\text {oes }} \\ & \mathrm{C}_{\text {res }} \end{aligned}$ | $\} \mathrm{V}_{\mathrm{CE}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ | $\begin{array}{r} 2500 \\ 270 \\ 70 \end{array}$ | pF pF pF |
| $\begin{aligned} & \mathbf{Q}_{\mathrm{g}} \\ & \mathbf{Q}_{\mathrm{ge}} \\ & \mathbf{Q}_{\mathrm{gc}} \\ & \hline \end{aligned}$ | \} $I_{C}=I_{C 90}, V_{G E}=15 \mathrm{~V}, \mathrm{~V}_{C E}=0.5 \mathrm{~V}_{C E S}$ | 125 23 50 | $\begin{array}{rl} \hline 150 & \mathrm{nC} \\ 35 & \mathrm{nC} \\ 75 & \mathrm{nC} \end{array}$ |
| $\begin{aligned} & \hline t_{\mathrm{d}(\mathrm{on})} \\ & t_{\mathrm{if}} \\ & t_{\mathrm{d}(\mathrm{fff})} \\ & t_{\mathrm{fif}} \\ & E_{\mathrm{off}} \end{aligned}$ | Inductive load, $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 9}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~L}=100 \mu \mathrm{H}, \\ & \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CES}}, R_{\mathrm{G}}=\mathrm{R}_{\mathrm{off}}=4.7 \Omega \end{aligned}$ <br> Remarks: Switching times may increase for $\mathrm{V}_{\mathrm{CE}}($ Clamp $)>0.8 \cdot \mathrm{~V}_{\mathrm{CES}}$, higher $T_{J}$ or increased $R_{G}$ | $\begin{array}{r} \hline 25 \\ 30 \\ 120 \\ 125 \\ 1.8 \end{array}$ |   <br>  ns <br>  ns <br> 200 ns <br> 175 ns <br>  mJ |
| $\begin{aligned} & \hline t_{\mathrm{d}(\mathrm{on})} \\ & \mathbf{t}_{\mathrm{if}} \\ & E_{\mathrm{on}} \\ & \mathbf{t}_{\mathrm{doff})} \\ & \mathbf{t}_{\mathrm{fif}} \\ & E_{\mathrm{off}} \end{aligned}$ | Inductive load, $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ $\begin{aligned} & I_{C}=I_{C 90}, V_{G E}=15 \mathrm{~V}, \mathrm{~L}=100 \mu \mathrm{H} \\ & V_{C E}=0.8 \mathrm{~V}_{\mathrm{CES}}, R_{G}=R_{\text {off }}=4.7 \Omega \end{aligned}$ <br> Remarks: Switching times may increase for $\mathrm{V}_{\mathrm{CE}}$ (Clamp) $>0.8 \cdot \mathrm{~V}_{\text {CES }}$, higher $T_{J}$ or increased $R_{G}$ | $\begin{array}{r} \hline 25 \\ 35 \\ 1 \\ 140 \\ 260 \\ 4 \end{array}$ | ns ns mJ ns ns mJ |
| $\begin{aligned} & \mathbf{R}_{\mathrm{thJc}} \\ & \mathbf{R}_{\mathrm{thck}} \end{aligned}$ |  | 0.25 | $\begin{array}{r} 0.62 \text { K/W } \\ \text { K/W } \end{array}$ |

Reverse Diode (FRED)
Characteristic Values
( $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

| Symbol | Test Conditions min. | typ. | max. |
| :---: | :---: | :---: | :---: |
| $\overline{V_{F}}$ | $I_{F}=I_{C 90}, V_{G E}=0 \mathrm{~V},$ <br> Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\mathrm{d} \leq 2 \%$ |  | 1.6 V |
| $\mathrm{I}_{\text {RM }}$ | $\begin{cases}I_{F}=I_{c 90}, V_{G E}=0 \mathrm{~V},-d i_{F} / d t=240 \mathrm{~A} / \mu \mathrm{s} & \\ V_{R}=360 \mathrm{~V} & T_{J}=125^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} ;-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{V}_{\mathrm{R}}=30 \mathrm{~V} & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\end{cases}$ | $\begin{array}{r} 10 \\ 150 \\ 35 \\ \hline \end{array}$ | $\begin{array}{rr}15 & \text { A } \\ & \text { ns } \\ 50 & \mathrm{~ns}\end{array}$ |
| $\overline{\mathbf{R}_{\text {thJc }}}$ |  |  | $1 \mathrm{~K} / \mathrm{W}$ |

Min. Recommended Footprint
(Dimensions in inches and mm )


IXYS reserves the right to change limits, test conditions, and dimensions.

