

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

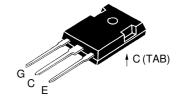
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HiPerFAST™ IGBT


IXGH32N60B

 $\mathbf{V}_{\mathsf{CES}}$ 600 V CE(sat) 80 ns

Symbol	Test Conditions	Maximum Ratings				
V _{CES}	T _J = 25°C to 150°C	600	V			
V _{CGR}	$T_J = 25^{\circ}C$ to $150^{\circ}C$; $R_{GE} = 1 M\Omega$	600	V			
V _{GES}	Continuous	±20	V			
V _{GEM}	Transient	±30	V			
I _{C25}	T _C = 25°C	60	A			
I _{C90}	$T_{C} = 90^{\circ}C$	32	Α			
I _{CM}	$T_{C} = 25^{\circ}C$, 1 ms	120	Α			
SSOA (RBSOA)	V_{GE} = 15 V, T_{VJ} = 125°C, R_{G} = 33 Ω Clamped inductive load, L = 100 μ H	I _{CM} = 64 @ 0.8 V _{CES}	A			
P _c	T _C = 25°C	200	W			
T		-55 +150	°C			
T_{JM}		150	°C			
T _{stg}		-55 +150	°C			
Maximum lea	ad temperature for soldering S2 in.) from case for 10 s	300	°C			
\mathbf{M}_{d}	Mounting torque (M3)	1.13/10	Nm/lb.in.			
Weight		TO-247 AD 6	g			

TO-247 AD

G = Gate,C = Collector,E = Emitter, TAB = Collector

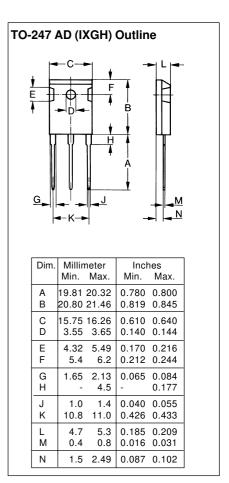
Features

- International standard package JEDEC TO-247 AD
- High current handling capability
 Newest generation HDMOS™ process
- MOS Gate turn-on
 - drive simplicity

Symbol	Test Conditions	Characteristic Values (T ₁ = 25°C, unless otherwise specified)			
		min.	typ.	max.	
BV _{CES}	$\begin{array}{ll} I_{C} &= 250 \; \mu A, \; V_{GE} = 0 \; V \\ I_{C} &= 250 \; \mu A, \; V_{CE} = V_{GE} \end{array}$	600 2.5		5	V
	·	·			

$\mathbf{BV}_{\mathtt{CES}}$ $\mathbf{V}_{\mathtt{GE(th)}}$	$I_{C}^{}=250~\mu\text{A},~V_{GE}^{}=0~\text{V}$ $I_{C}^{}=250~\mu\text{A},~V_{CE}^{}=V_{GE}^{}$		600 2.5	5	V V
I _{CES}	$V_{CE} = 0.8 \cdot V_{CES}$ $V_{GE} = 0 V$	T _J = 25°C T _J = 125°C		200 1	μA mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$			±100	nA
V _{CE(sat)}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \text{ V}$			2.5	V

Applications


- · PFC circuits
- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies

Advantages

- · High power density
- · Very fast switching speeds for high frequency applications

Symbol		Test Conditions Characteristic Values $(T_1 = 25^{\circ}C, \text{ unless otherwise specified})$				
		(1 _J = 25 G, unle: mi		typ.	max.	iieu)
g _{fs}		$I_{\rm C} = I_{\rm C90}; V_{\rm CE} = 10 \text{ V},$ Pulse test, t \le 300 \mus, duty cycle \le 2 %	5	20		S
C _{ies})			2500		рF
C _{oes}		$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		230		рF
\mathbf{C}_{res}	J			70		рF
Q _q	1			125	150	nC
\mathbf{Q}_{ge}^{r}		$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \rm V, V_{\rm CE} = 0.5 V_{\rm CES}$		23	35	nC
\mathbf{Q}_{gc}	J			50	75	nC
t _{d(on)}	`\	Inductive load, T _J = 25°C		25		ns
t _{ri}		$I_{C} = I_{C90}, V_{GE} = 15 \text{ V}, L = 100 \mu\text{H},$		30		ns
$\mathbf{t}_{d(off)}$	\rangle	$V_{CE} = 0.8 V_{CES}, R_{G} = R_{off} = 4.7 \Omega$ Remarks: Switching times may		100	200	ns
t _{fi}		increase for V_{CE} (Clamp) > 0.8 • V_{CES} ,		80	150	ns
E _{off}		higher T _J or increased R _G		0.8	1.6	mJ
$\mathbf{t}_{d(on)}$	1	Inductive load, T _J = 125°C		25		ns
t _{ri}		$I_{_{C}} = I_{_{C90}}, V_{_{GE}} = 15 V, L = 100 \mu H$		35		ns
\mathbf{E}_{on}		$V_{\text{CE}} = 0.8 \ V_{\text{CES}}, \ R_{\text{G}} = R_{\text{off}} = 4.7 \ \Omega$		0.3		mJ
$\mathbf{t}_{d(off)}$	- (Remarks: Switching times may		120		ns
t _{fi}		increase for V _{CE} (Clamp) > 0.8 • V _{CES} ,		120		ns
E _{off}	ر 	higher T _J or increased R _G		1.4		mJ
R _{thJC}					0.62	K/W
R _{thCK}				0.25		K/W

IXGH 32N60B characteristic curves are located in the IXGH 32N60BU1 data sheet.