

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

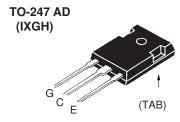
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GenX3[™] 300V IGBT

IXGH60N30C3


High Speed IGBTs for 50-150kHz switching

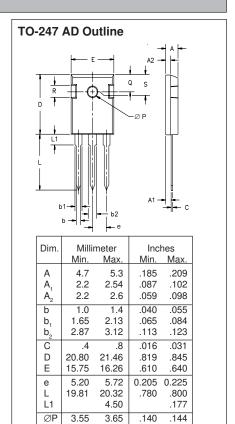
Symbol	Test Conditions	Maximum R	Maximum Ratings	
V _{CES}	T _J = 25°C to 150°C	300	V	
$\mathbf{V}_{\mathtt{CGR}}$	$T_{_J} = 25^{\circ}C$ to 150°C, $R_{_{GE}} = 1M\Omega$	300	V	
V _{GES}	Continuous	±20	V	
V _{GEM}	Transient	±30	V	
I _{C25}	T _C = 25°C (Limited by leads)	75	A	
I _{C110}	$T_{\rm C} = 110^{\circ}$ C (chip capability)	60	Α	
I _{CM}	$T_{C} = 25^{\circ}C$, 1ms	420	Α	
I _A	T _C = 25°C	60	Α	
E _{AS}	$T_{C} = 25^{\circ}C$	400	mJ	
SSOA (RBSOA)	V_{GE} = 15V, T_{VJ} = 125°C, R_{G} = 5 Ω Clamped inductive load @ \leq 300V	I _{CM} = 170	А	
P _c	T _C = 25°C	300	W	
T _J		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L T _{SOLD}	Maximum lead temperature for soldering 1.6 mm (0.062 in.) from case for 10s	300 260	°C °C	
M _d	Mounting torque (TO-247)	1.13/10	Nm/lb.in.	
Weight		6	g	

Symbol	Test Conditions	(T _J = 25°C, unl Min.	ess oth		
BV _{CES}	$\begin{array}{ll} I_{_{C}} &= 250 \mu A, \ V_{_{GE}} = 0 V \\ I_{_{C}} &= 250 \mu A, \ V_{_{CE}} = V_{_{GE}} \end{array}$	300 2.5		5.0	V
I _{CES}	$egin{array}{lll} V_{\text{CE}} &= V_{\text{CES}} \ V_{\text{GE}} &= 0 \ \end{array}$	T _J = 125°C		30 750	μ Α μ Α
GES	V_{CE} = 0V, V_{GE} = \pm 20V			±100	nA
V _{CE(sat)}	$I_{\rm C} = 60A, V_{\rm GE} = 15V$	T _J = 125°C	1.55 1.60	1.8	V V

 $egin{array}{lll} V_{\text{CES}} & = & 300 V \\ I_{\text{C110}} & = & 60 A \\ V_{\text{CE(sat)}} & \leq & 1.8 V \\ t_{\text{fi typ}} & = & 70 ns \\ \end{array}$

G = Gate	C = Collector
E = Emitter	TAB = Collector

Features


- High Frequency IGBT
- Square RBSOA
- High avalanche capability
- Drive simplicity with MOS Gate Turn-On
- High current handling capability

Applications

- PFC Circuits
- PDP Systems
- Switched-mode and resonant-mode converters and inverters
- SMPS
- AC motor speed control
- DC servo and robot drives
- DC choppers

Symbol Test Conditions (T _J = 25°C, unless otherwise specified)	Min.	Characte Typ.	ristic Values Max.
$\begin{aligned} \textbf{g}_{\text{fs}} & \textbf{I}_{\text{C}} &= 0.5 \bullet \textbf{I}_{\text{C110}}, \textbf{V}_{\text{CE}} = 10 \text{V} \\ &\text{Pulse test, } t \leq 300 \mu \text{s; duty cycle, d} \leq 2 \%. \end{aligned}$	28	46	S
$\left. egin{array}{ll} $		3800 240 63	pF pF pF
$\left. \begin{array}{l} \mathbf{Q_g} \\ \mathbf{Q_{ge}} \\ \mathbf{Q_{gc}} \end{array} \right\} \ \mathbf{I_C} = \mathbf{I_{C110}}, \ \mathbf{V_{GE}} = 15 \ \mathbf{V}, \ \mathbf{V_{CE}} = 0.5 \cdot \mathbf{V_{CES}}$		101 21 37	nC nC nC
$ \begin{array}{c} \textbf{t}_{d(on)} \\ \textbf{t}_{ri} \\ \textbf{E}_{on} \\ \textbf{t}_{d(off)} \\ \textbf{t}_{fi} \\ \textbf{E}_{off} \\ \end{array} \right) \begin{array}{c} \textbf{Inductive Load, T}_{J} = \textbf{25}^{\circ}\textbf{C} \\ \textbf{I}_{C} = 0.5 \bullet \textbf{I}_{C110}, \textbf{V}_{GE} = 15 \textbf{V} \\ \textbf{V}_{CE} = 200 \textbf{V}, \textbf{R}_{G} = 5 \Omega \end{array} $		23 28 0.15 108 68 0.30	ns ns mJ 160 ns ns 0.55 mJ
$ \begin{cases} \textbf{t}_{d(on)} \\ \textbf{t}_{ri} \\ \textbf{E}_{on} \\ \textbf{t}_{d(off)} \\ \textbf{t}_{ri} \\ \textbf{E}_{off} \end{cases} $		22 28 0.26 120 101 0.40	ns ns mJ ns ns
R _{thJC} R _{thCK}		0.21	0.42 °C/W °C/W

Q

R

S

5.89

4.32

6.15 BSC

6.40

5.49

0.232 0.252

242 BSC

.216

.170

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS reserves the right to change limits, test conditions, and dimensions.