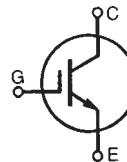


Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

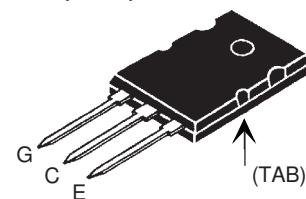
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

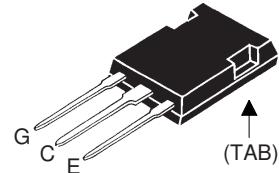

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


HiPerFAST™ IGBT
Lightspeed 2™ Series
IXGK 120N60C2
IXGX 120N60C2

V_{CES}	=	600	V
I_{C110}	=	120	A
$V_{CE(sat)}$	=	2.5	V
$t_{fi(ty)}$	=	45	ns



Symbol	Test Conditions	Maximum Ratings	
V_{CES}	$T_J = 25^\circ\text{C}$ to 150°C	600	V
V_{CGR}	$T_J = 25^\circ\text{C}$ to 150°C ; $R_{GE} = 1 \text{ M}\Omega$	600	V
V_{GES}	Continuous	± 20	V
V_{GEM}	Transient	± 30	V
I_{C25}	$T_C = 25^\circ\text{C}$ (limited by leads)	75	A
I_{C110}	$T_C = 110^\circ\text{C}$ (die limit)	120	A
I_{CM}	$T_C = 25^\circ\text{C}$, 1 ms	500	A
SSOA (RBSOA)	$V_{GE} = 15 \text{ V}$, $T_{VJ} = 125^\circ\text{C}$, $R_G = 4.7 \Omega$ Clamped inductive load @ $V_{CE} \leq 600 \text{ V}$	$I_{CM} = 200$	A
P_c	$T_C = 25^\circ\text{C}$	830	W
T_J		-55 ... +150	$^\circ\text{C}$
T_{JM}		150	$^\circ\text{C}$
T_{stg}		-55 ... +150	$^\circ\text{C}$
V_{ISOL}	50/60 Hz, RMS, $t = 1$ minute $I_{ISOL} < 1 \text{ mA}$ $t = 20$ seconds	2500 3000	V~ V~
F_c	Clamping force	20..120/4.5..25	N/ib
T_L	Maximum lead temperature for soldering (Note 3)	300	$^\circ\text{C}$
T_{SOLD}	Plastic body for 10 seconds	260	$^\circ\text{C}$
Weight	TO-264 PLUS247	10 5	g g

TO-264(IXGK)

PLUS247(IXGX)

G = Gate C = Collector
 E = Emitter Tab = Collector

Features

- Very high frequency IGBT
- Square RBSOA
- High current handling capability
- MOS Gate turn-on
 - drive simplicity

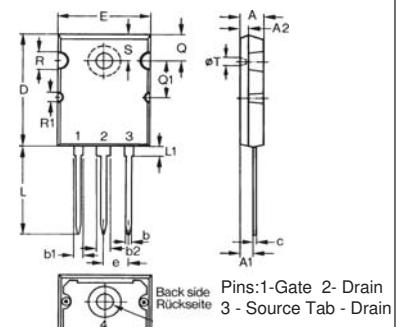
Applications

- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies
- AC motor speed control
- DC servo and robot drives
- DC choppers

Advantages

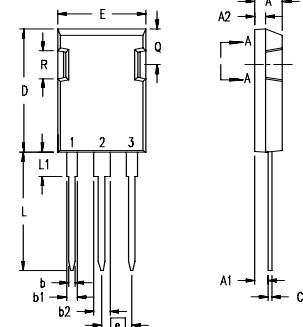
- High power density
- Very fast switching speeds for high frequency applications
- High power surface mountable packages

Symbol	Test Conditions	Characteristic Values		
		($T_J = 25^\circ\text{C}$ unless otherwise specified)	Min.	Typ.
BV_{CES}	$I_C = 1 \text{ mA}$, $V_{GE} = 0 \text{ V}$	600		V
$V_{GE(th)}$	$I_C = 500 \mu\text{A}$, $V_{CE} = V_{GE}$	3.0	5.0	V
I_{CES}	$V_{CE} = V_{CES}$ $V_{GE} = 0 \text{ V}$		100 2	μA mA
		$T_J = 125^\circ\text{C}$		
I_{GES}	$V_{CE} = 0 \text{ V}$, $V_{GE} = \pm 20 \text{ V}$		± 200	nA
$V_{CE(sat)}$	$I_C = I_T$, $V_{GE} = 15 \text{ V}$ Note 1	$T_J = 25^\circ\text{C}$ $T_J = 125^\circ\text{C}$	2.1 2.0	2.5 V


Symbol	Test Conditions	Characteristic Values			
		($T_J = 25^\circ\text{C}$ unless otherwise specified)	Min.	Typ.	Max.
g_{fs}	$I_C = 60 \text{ A}; V_{CE} = 10 \text{ V}$, Note 1	50	75	S	
C_{les}			11	nF	
C_{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		680	pF	
C_{res}			190	pF	
Q_g			350	nC	
Q_{ge}	$I_C = I_T, V_{GE} = 15 \text{ V}, V_{CE} = 0.5 V_{CES}$		72	nC	
Q_{gc}			131	nC	
$t_{d(on)}$	Inductive load, $T_J = 25^\circ\text{C}$ $I_C = 80 \text{ A}, V_{GE} = 15 \text{ V}$ $V_{CE} = 400 \text{ V}, R_G = R_{off} = 1.0 \Omega$	18	ns		
t_{ri}		25	ns		
$t_{d(off)}$		95	150	ns	
t_{fi}		45	ns		
E_{off}		0.9	1.6	mJ	
$t_{d(on)}$	Inductive load, $T_J = 125^\circ\text{C}$ $I_C = 80 \text{ A}, V_{GE} = 15 \text{ V}$ $V_{CE} = 400 \text{ V}, R_G = R_{off} = 1.0 \Omega$	18	ns		
t_{ri}		25	ns		
E_{on}		1.6	mJ		
$t_{d(off)}$		130	ns		
t_{fi}		85	ns		
E_{off}		1.5	mJ		
R_{thJC}			0.15	K/W	
R_{thJC}			0.15	K/W	

Note: 1. Pulse test, $t \leq 300 \mu\text{s}$, duty cycle $\leq 2\%$;

2. Test current $I_T = 100 \text{ A}$;


3. Temperature measured at 1.6 mm (0.062 in.) from case for 10 seconds

TO-264 AA Outline

Dim.	Millimeter Min.	Millimeter Max.	Inches Min.	Inches Max.
A	4.82	5.13	.190	.202
A1	2.54	2.89	.100	.114
A2	2.00	2.10	.079	.083
b	1.12	1.42	.044	.056
b1	2.39	2.69	.094	.106
b2	2.90	3.09	.114	.122
c	0.53	0.83	.021	.033
D	25.91	26.16	.1020	.1030
E	19.81	19.96	.780	.786
e	5.46 BSC		.215 BSC	
J	0.00	0.25	.000	.010
K	0.00	0.25	.000	.010
L	20.32	20.83	.800	.820
L1	2.29	2.59	.090	.102
P	3.17	3.66	.125	.144
Q	6.07	6.27	.239	.247
Q1	8.38	8.69	.330	.342
R	3.81	4.32	.150	.170
R1	1.78	2.29	.070	.090
S	6.04	6.30	.238	.248
T	1.57	1.83	.062	.072

PLUS 247™ (IXGX) Outline

Terminals:
1 - Gate
2 - Drain (Collector)
3 - Source (Emitter)
4 - Drain (Collector)

Dim.	Millimeter Min.	Millimeter Max.	Inches Min.	Inches Max.
A	4.83	5.21	.190	.205
A ₁	2.29	2.54	.090	.100
A ₂	1.91	2.16	.075	.085
b	1.14	1.40	.045	.055
b ₁	1.91	2.13	.075	.084
b ₂	2.92	3.12	.115	.123
C	0.61	0.80	.024	.031
D	20.80	21.34	.819	.840
E	15.75	16.13	.620	.635
e	5.45 BSC		.215 BSC	
L	19.81	20.32	.780	.800
L1	3.81	4.32	.150	.170
Q	5.59	6.20	.220	.244
R	4.32	4.83	.170	.190

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETs and IGBTs are covered by 4,835,592 4,931,844 5,049,961 5,237,481 6,162,665 6,404,065 B1 6,683,344 6,727,585 one or more of the following U.S. patents: 4,850,072 5,017,508 5,063,307 5,381,025 6,259,123 B1 6,534,343 6,710,405B2 6,759,692 4,881,106 5,034,796 5,187,117 5,486,715 6,306,728 B1 6,583,505 6,710,463 6,771,478 B2