## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

HiPerFAST ${ }^{\text {TM }}$ IGBT

Symbol
Test Conditions


## Symbol Test Conditions

Characteristic Values ( $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

| Symbol | Test Conditions | Characteristic Values ( $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified) |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. |  |
| BV ${ }_{\text {ces }}$ | $\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{G E}=0 \mathrm{~V}$ | 600 |  | V |
| $\mathrm{V}_{\text {GE(th) }}$ | $\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}$ | 2.5 |  | 5.0 V |
| $\mathrm{I}_{\text {CES }}$ | $\mathrm{V}_{\text {CE }}=0.8 \cdot \mathrm{~V}_{\text {CES }}$ $\mathrm{V}_{\text {GE }}=0 \mathrm{~V}$ | $\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$ |  | $\begin{array}{rr} 200 & \mu \mathrm{~A} \\ 1 & \mathrm{~mA} \end{array}$ |
| $\mathrm{I}_{\text {GES }}$ | $\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$ |  |  | $\pm 100 \mathrm{nA}$ |
| $\mathrm{V}_{\text {CE(sat) }}$ | $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{\text {GE }}=15 \mathrm{~V}$ |  |  | 2.3 V |

## IXGH 50N60B IXGK 50N60B IXGT 50N60B IXGJ 50N60B



Maximum Ratings


TO-268 (D3) ( IXGT)


TO-268 Leaded (IXGJ)

(TAB)


$$
\begin{array}{ll}
\mathrm{G}=\text { Gate } & \mathrm{D}=\text { Drain } \\
\mathrm{E}=\text { Emitter } & \mathrm{TAB}=\text { Collector }
\end{array}
$$

## Features

- International standard packages
- High frequency IGBT
- Latest generation HDMOS ${ }^{\text {TM }}$ process
- High current handling capability
- MOS Gate turn-on
- drive simplicity


## Applications

- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies


## Advantages

- Easy to mount with 1 screw (insulated mounting screw hole)
- Switching speed for high frequency applications
- High power density

IXGH 50N60B IXGK 50N60B IXGJ 50N60B IXGT 50N60B

Symbol

Characteristic Values ( $T_{j}=25^{\circ} \mathrm{C}$, unless otherwise specified) min. typ. $^{2}$ max.

| $\mathrm{g}_{\text {fs }}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{Co} 9} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \\ & \text { Pulse test, } \mathrm{t} \leq 300 \mu \mathrm{~s} \text {, duty cycle } \leq 2 \% \end{aligned}$ | 42 |  | S |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{C}_{\text {ies }} \\ & \mathrm{C}_{\text {oes }} \\ & \mathrm{C}_{\text {res }} \end{aligned}$ | $\} \quad V_{C E}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ | $\begin{array}{r} 4100 \\ 310 \\ 95 \end{array}$ |  | $\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$ |
| $\begin{aligned} & \mathbf{Q}_{G} \\ & \mathbf{Q}_{\mathrm{GE}} \\ & \mathbf{Q}_{\mathrm{GC}} \end{aligned}$ | \} $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{G E}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0.5 \mathrm{~V}_{\mathrm{CES}}$ | $\begin{array}{r} 160 \\ 30 \\ 55 \end{array}$ |  | nC nC nC |
| $\begin{aligned} & t_{\mathrm{d}((\mathrm{n})} \\ & t_{\mathrm{ri}} \\ & t_{\mathrm{d}(\mathrm{fff})} \\ & t_{\mathrm{fi}} \\ & E_{\mathrm{off}} \end{aligned}$ | Inductive load, $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ $\begin{aligned} & I_{C}=I_{C g 0}, V_{G E}=15 \mathrm{~V} \\ & V_{C E}=0.8 \cdot V_{C E S}, R_{G}=R_{\text {off }}=2.7 \Omega \end{aligned}$ <br> Remarks: Switching times may increase for $\mathrm{V}_{\mathrm{CE}}($ Clamp $)>0.8 \cdot \mathrm{~V}_{\mathrm{CES}}$, higher $\mathrm{T}_{\mathrm{J}}$ or increased $R_{G}$ | $\begin{array}{r} 50 \\ 50 \\ 150 \\ 120 \\ 3.0 \end{array}$ | $\begin{array}{r} 250 \\ 250 \\ 4.5 \end{array}$ | ns ns ns ns mJ |
| $\begin{aligned} & \hline t_{\mathrm{d}(0 \mathrm{n})} \\ & t_{\mathrm{ri}} \\ & E_{\mathrm{on}} \\ & t_{\mathrm{d}(\mathrm{fff})} \\ & t_{\mathrm{fi}} \\ & E_{\mathrm{off}} \end{aligned}$ | Inductive load, $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ $\begin{aligned} & I_{C}=I_{C 90}, V_{G E}=15 \mathrm{~V} \\ & V_{C E}=0.8 \cdot V_{C E S}, R_{G}=R_{\text {off }}=2.7 \Omega \end{aligned}$ <br> Remarks: Switching times may increase for $\mathrm{V}_{\mathrm{CE}}($ Clamp $)>0.8 \cdot \mathrm{~V}_{\text {CES }}$, higher $\mathrm{T}_{\mathrm{J}}$ or increased $\mathrm{R}_{\mathrm{G}}$ | $\begin{array}{r} 50 \\ 50 \\ 3 \\ 200 \\ 250 \\ 4.2 \end{array}$ |  | ns ns mJ ns ns mJ |
| $\mathbf{R}_{\text {thJc }}$ $\mathbf{R}_{\text {thck }}$ | TO-247 \& TO-268 leaded packages TO-264 package | $\begin{aligned} & 0.25 \\ & 0.15 \end{aligned}$ | 0.42 | KW <br> KW <br> KW |

TO-268 (IXGJ) Leaded Outline

note: all metal area are solder plated
1 - GATE
2 - DRAIN (COLLECTOR)
3 - SOURCE (EMITER)

TO-247 AD (IXGH) Outline


| Dim. | Millimeter |  | Inches |  |
| :--- | ---: | ---: | ---: | ---: |
|  | Min. | Max. | Min. | Max. |
| A | 4.7 | 5.3 | .185 | .209 |
| A $_{1}$ | 2.2 | 2.54 | .087 | .102 |
| a $_{2}$ | 2.2 | 2.6 | .059 | .098 |
| b | 1.0 | 1.4 | .040 | .055 |
| b $_{1}$ | 1.65 | 2.13 | .065 | .084 |
| b $_{2}$ | 2.87 | 3.12 | .113 | .123 |
| C | .4 | .8 | .016 | .031 |
| D | 20.80 | 21.46 | .819 | .845 |
| E | 15.75 | 16.26 | .610 | .640 |
| e | 5.20 | 5.72 | 0.205 | 0.225 |
| L | 19.81 | 20.32 | .780 | .800 |
| L1 |  | 4.50 |  | .177 |
| $\varnothing P$ | 3.55 | 3.65 | .140 | .144 |
| Q | 5.89 | 6.40 | 0.232 | 0.252 |
| R | 4.32 | 5.49 | .170 | .216 |
| S | 6.15 | $B S C$ | 242 | BSC |

TO-264 AA (IXGK) Outline


| Dim. | Millimeter |  | Inches |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Min. | Max. | Min. | Max. |
| A | 4.82 | 5.13 | .190 | .202 |
| A1 | 2.54 | 2.89 | .100 | .114 |
| A2 | 2.00 | 2.10 | .079 | .083 |
| b | 1.12 | 1.42 | .044 | .056 |
| b1 | 2.39 | 2.69 | .094 | .106 |
| b2 | 2.90 | 3.09 | .114 | .122 |
| c | 0.53 | 0.83 | .021 | .033 |
| D | 25.91 | 26.16 | 1.020 | 1.030 |
| E | 19.81 | 19.96 | .780 | .786 |
| e | 5.46 BSC | .215 BSC |  |  |
| J | 0.00 | 0.25 | .000 | .010 |
| K | 0.00 | 0.25 | .000 | .010 |
| L | 20.32 | 20.83 | .800 | .820 |
| L1 | 2.29 | 2.59 | .090 | .102 |
| P | 3.17 | 3.66 | .125 | .144 |
| Q | 6.07 | 6.27 | .239 | .247 |
| Q1 | 8.38 | 8.69 | .330 | .342 |
| R | 3.81 | 4.32 | .150 | .170 |
| R1 | 1.78 | 2.29 | .070 | .090 |
| S | 6.04 | 6.30 | .238 | .248 |
| T | 1.57 | 1.83 | .062 | .072 |

Figure 1. Saturation Voltage Characteristics


Figure 3. Saturation Voltage Characteristics


Figure 5. Admittance Curves


Figure 2. Extended Output Characteristics


Figure 4. Temperature Dependence of $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$


Figure 6. Capacitance Curves


IXGH 50N60B IXGK 50N60B IXGJ 50N60B IXGT 50N60B

Figure 7. Dependence of $\mathrm{E}_{\mathrm{ON}}$ and $\mathrm{E}_{\mathrm{OFF}}$ on $\mathrm{I}_{\mathrm{C}}$


Figure 9. Gate Charge


Figure 8. Dependence of $E_{\text {ON }}$ and $E_{\text {OFF }}$ on $R_{G}$


Figure 10. Turn-offSafe Operating Area


Figure 11. IGBT Transient Thermal Resistance


