: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Ultra-Low $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ IGBT

Preliminary data sheet

Symbol	Test Conditions	Maximum	Ratings
$\mathrm{V}_{\text {ces }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	600	V
$\mathrm{V}_{\text {cGR }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GE}}=1 \mathrm{M} \Omega$	600	V
$\mathrm{V}_{\text {GES }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GEM }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{C} 25}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	100	A
$\mathrm{I}_{\text {c90 }}$	$\mathrm{T}_{\mathrm{c}}=90^{\circ} \mathrm{C}$	60	A
$\mathrm{I}_{\text {cm }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 1 \mathrm{~ms}$	200	A
$\begin{aligned} & \text { SSOA } \\ & \text { (RBSOA) } \end{aligned}$	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=10 \Omega$ $\text { Clamped inductive load, } \mathrm{L} \stackrel{\mathrm{G}}{=} 30 \mu \mathrm{H}$	$\begin{array}{r} \mathrm{I}_{\mathrm{CM}}=100 \\ @ 0.8 \mathrm{~V}_{\text {CES }} \end{array}$	A
P_{c}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	250	W
T_{J}		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
M_{d}	Mountingtorque	1.5/13	Nm/lb.in.
	Terminal connection torque (M4)	1.5/13	Nm/lb.in.
Weight		30	g
Maximum lead temperature for soldering 1.6 mm (0.062 in.) from case for 10 s		300	${ }^{\circ} \mathrm{C}$

1.6 mm (0.062 in .) from case for 10 s

Symbol
Test Conditions
Characteristic Values

		$\begin{array}{r} \left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right. \text {, unless } \\ \text { min. } . \end{array}$	$\begin{gathered} \text { therw } \\ \text { typ. } \end{gathered}$	e spec max.	
$B V_{\text {ces }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$	600			V
$\mathrm{V}_{\mathrm{GE}(\mathrm{th})}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {GE }}$	2.5		5	V
$\mathrm{I}_{\text {ces }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=0.8 \cdot \mathrm{~V}_{\mathrm{CES}} \\ & \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$		200 1	
$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$			± 100	nA
$\mathrm{V}_{\text {CE(sat) }}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$			1.7	V

IXGN 60N60

SOT-227B miniBLOC

$\mathrm{G}=$ Gate, $\mathrm{C}=$ Collector, $\mathrm{E}=$ Emitter
(1) Either emitter terminal can be used as Main or Kelvin Emitter

Features

- International standard package SOT-227B
- Aluminium nitride isolation
- high power dissipation
- Isolation voltage 3000 V~
- Very high current, fast switching IGBT
- Low $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ for minimum on-state conduction losses
- MOS Gate turn-on drive simplicity
- Low collector-to-case capacitance (< 50 pF)
- Low package inductance (<5 nH) - easy to drive and to protect

Applications

- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode powersupplies

Advantages

- Easy to mount with 2 screws
- Space savings
- High power density

Symbol	Test Conditions	Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)	
		typ.	max.
$\mathrm{g}_{\text {ts }}$	$I_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V},$ Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$	55	S
$\begin{aligned} & \mathrm{C}_{\text {ies }} \\ & \mathrm{C}_{\text {oes }} \\ & \mathrm{C}_{\text {res }} \end{aligned}$	$\} \mathrm{V}_{\mathrm{CE}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\begin{array}{r} 4000 \\ 290 \\ 100 \end{array}$	pF pF pF
$\begin{aligned} & \mathbf{Q}_{\mathrm{g}} \\ & \mathbf{Q}_{\mathrm{ge}} \\ & \mathbf{Q}_{\mathrm{gc}} \end{aligned}$	$\} \quad \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 90}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0.5 \mathrm{~V}_{\mathrm{CES}}$	$\begin{array}{r} 200 \\ 35 \\ 80 \end{array}$	nC nC nC
$t_{d(o n)}$ $t_{\text {ri }}$ $t_{\text {d(off) }}$ $t_{\text {fii }}$ $E_{\text {off }}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 90}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~L}=100 \mu \mathrm{H}, \\ & \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CES}}, \mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\mathrm{off}}=2.7 \Omega \end{aligned}$ Remarks: Switching times may increase for $\mathrm{V}_{\mathrm{CE}}($ Clamp $)>0.8 \cdot \mathrm{~V}_{\mathrm{CES}}$, higher T_{J} or increased R_{G}	$\begin{array}{r} 50 \\ 30 \\ 300 \\ 360 \\ 8 \end{array}$	
$\begin{aligned} & t_{\mathrm{don})} \\ & t_{\mathrm{ri}} \\ & E_{\mathrm{on}} \\ & t_{\mathrm{d}(\mathrm{fff})} \\ & t_{\mathrm{fi}} \\ & E_{\mathrm{off}} \end{aligned}$	$\left\{\begin{array}{l} \text { Inductive load, } \mathbf{T}_{J}=\mathbf{1 2 5}{ }^{\circ} \mathbf{C} \\ \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 90}, \mathrm{~V}_{G E}=15 \mathrm{~V}, \mathrm{~L}=100 \mu \mathrm{H} \\ \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CES}}, R_{G}=R_{\text {off }}=2.7 \Omega \\ \text { Remarks: Switching times may increase } \\ \text { for } \mathrm{V}_{\mathrm{CE}}(\text { Clamp })>0.8 \cdot \mathrm{~V}_{\mathrm{CES}}, \text { higher } \mathrm{T}_{J} \text { or } \\ \text { increased } \mathrm{R}_{\mathrm{G}} \end{array}\right.$	$\begin{array}{r} 50 \\ 30 \\ 3 \\ 650 \\ 550 \\ 17 \end{array}$	ns ns mJ ns ns mJ
$\begin{aligned} & \mathbf{R}_{\mathrm{thuc}} \\ & \mathbf{R}_{\mathrm{thck}} \end{aligned}$		0.05	$\begin{array}{r} 0.50 \text { K/W } \\ \text { K/W } \end{array}$

miniBLOC, SOT-227 B

M4 screws (4x) supplied

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	31.50	31.88	1.240	1.255
B	7.80	8.20	0.307	0.323
C	4.09	4.29	0.161	0.169
D	4.09	4.29	0.161	0.169
E	4.09	4.29	0.161	0.169
F	14.91	15.11	0.587	0.595
G	30.12	30.30	1.186	1.193
H	38.00	38.23	1.496	1.505
J	11.68	12.22	0.460	0.481
K	8.92	9.60	0.351	0.378
L	0.76	0.84	0.030	0.033
M	12.60	12.85	0.496	0.506
N	25.15	25.42	0.990	1.001
O	1.98	2.13	0.078	0.084
P	4.95	5.97	0.195	0.235
Q	26.54	26.90	1.045	1.059
R	3.94	4.42	0.155	0.174
S	4.72	4.85	0.186	0.191
T	24.59	25.07	0.968	0.987
U	-0.05	0.1	-0.002	0.004

