

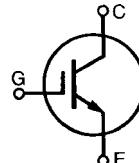
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

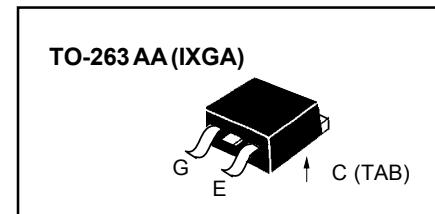
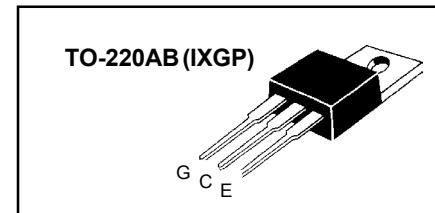
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832


Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IGBT



IXGA 20N100 IXGP 20N100

V_{CES} = 1000 V
 I_{C25} = 40 A
 $V_{CE(sat)}$ = 3.0 V

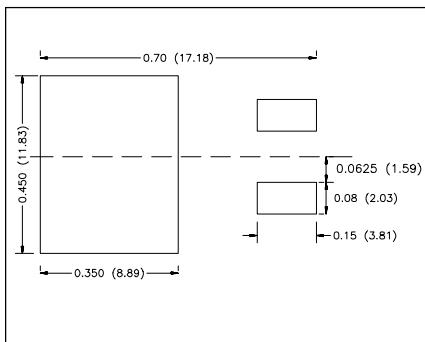
Preliminary Data Sheet

Symbol	Test Conditions	Maximum Ratings		
V_{CES}	T_J = 25°C to 150°C	1000	V	
V_{CGR}	T_J = 25°C to 150°C; R_{GE} = 1 MΩ	1000	V	
V_{GES}	Continuous	±20	V	
V_{GEM}	Transient	±30	V	
I_{C25}	T_c = 25°C	40	A	
I_{C90}	T_c = 90°C	20	A	
I_{CM}	T_c = 25°C, 1 ms	80	A	
SSOA (RBSOA)	V_{GE} = 15 V, T_{VJ} = 125°C, R_G = 47 Ω Clamped inductive load, L = 300 μH	I_{CM} = 40 A @ 0.8 V_{CES}		
P_c	T_c = 25°C	150	W	
T_J		-55 ... +150	°C	
T_{JM}		150	°C	
T_{stg}		-55 ... +150	°C	
Maximum lead temperature for soldering 1.6 mm (0.062 in.) from case for 10 s		300	°C	
M_d	Mounting torque with screw M3	0.45/4 Nm/lb.in.		
	Mounting torque with screw M3.5	0.55/5 Nm/lb.in.		
Weight	TO-220	4	g	
	TO-263	2	g	

Symbol	Test Conditions (T_J = 25°C, unless otherwise specified)	Characteristic Values		
		Min.	Typ.	Max.
BV_{CES}	I_c = 1 mA, V_{GE} = 0 V	1000		V
$V_{GE(th)}$	I_c = 250 μA, V_{CE} = V_{GE}	2.5		V
I_{CES}	V_{CE} = V_{CES} V_{GE} = 0 V	T_J = 25°C T_J = 125°C		μ A mA
I_{GES}	V_{CE} = 0 V, V_{GE} = ±20 V			nA
$V_{CE(sat)}$	I_c = I_{CE90} , V_{GE} = 15	2.2	3.0	V

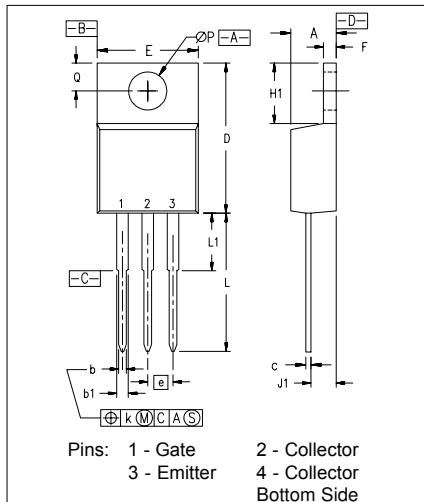
Features

- International standard packages JEDEC TO-220AB and TO-263AA
- High current handling capability
- MOS Gate turn-on
 - drive simplicity


Applications

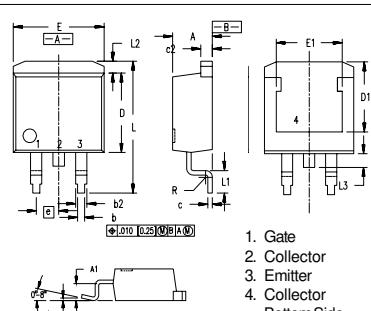
- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies
- Capacitor discharge

Advantages


- Easy to mount with one screw
- Reduces assembly time and cost
- High power density

Symbol	Test Conditions ($T_J = 25^\circ\text{C}$, unless otherwise specified)	Characteristic Values		
		Min.	Typ.	Max.
g_{fs}	$I_C = I_{C90}$; $V_{CE} = 10\text{ V}$, Pulse test, $t \leq 300\ \mu\text{s}$, duty cycle $\leq 2\ \%$	12	16	S
C_{ies} C_{oes} C_{res}	$V_{CE} = 25\text{ V}$, $V_{GE} = 0\text{ V}$, $f = 1\text{ MHz}$	1750	pF	
		100	pF	
		38	pF	
$I_{C(ON)}$	$V_{GE} = 10\text{ V}$, $V_{CE} = 10\text{ V}$	90	A	
Q_g Q_{ge} Q_{gc}	$I_C = I_{C90}$, $V_{GE} = 15\text{ V}$, $V_{CE} = 0.5\text{ V}_{CES}$	73	nC	
		13	nC	
		26	nC	
$t_{d(on)}$ t_{ri} $t_{d(off)}$ t_{fi} E_{off}	Inductive load, $T_J = 25^\circ\text{C}$ $I_C = I_{C90}$, $V_{GE} = 15\text{ V}$ $V_{CE} = 800\text{ V}$, $R_G = R_{off} = 47\ \Omega$ Remarks: Switching times may increase for V_{CE} (Clamp) $> 0.8\text{ V}_{CES}$, higher T_J or increased R_G	30	ns	
		30	ns	
		350	700	ns
		280	700	ns
		3.5	8.0	mJ
$t_{d(on)}$ t_{ri} E_{on} $t_{d(off)}$ t_{fi} E_{off}	Inductive load, $T_J = 125^\circ\text{C}$ $I_C = I_{C90}$, $V_{GE} = 15\text{ V}$ $V_{CE} = 800\text{ V}$, $R_G = R_{off} = 47\ \Omega$ Remarks: Switching times may increase for V_{CE} (Clamp) $> 0.8\text{ V}_{CES}$, higher T_J or increased R_G	30	ns	
		30	ns	
		0.65	mJ	
		700	ns	
		520	ns	
R_{thJC} R_{thCK}	TO-220		0.83	K/W
			0.5	K/W

Min. Recommended Footprint
(Dimensions in inches and mm)


TO-220 AB Dimensions

SYM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	.170	.190	4.32	4.83
b	.025	.040	0.64	1.02
b1	.045	.065	1.15	1.65
c	.014	.022	0.35	0.56
D	.580	.630	14.73	16.00
E	.390	.420	9.91	10.66
e	.100	BSC	2.54	BSC
F	.045	.055	1.14	1.40
H1	.230	.270	5.85	6.85
J1	.090	.110	2.29	2.79
k	0	.015	0	0.38
L	.500	.550	12.70	13.97
L1	.110	.130	2.79	5.84
$\emptyset P$.139	.161	3.53	4.08
Q	.100	.125	2.54	3.18

NOTE: This drawing will meet all dimensions requirement of JEDEC outline TO-220 AB.

TO-263 AA Outline

Dim.	Millimeter Min.	Max.	Inches Min.	Max.
A	4.06	4.83	.160	.190
A1	2.03	2.79	.080	.110
b	0.51	0.99	.020	.039
b2	1.14	1.40	.045	.055
c	0.46	0.74	.018	.029
c2	1.14	1.40	.045	.055
D	8.64	9.65	.340	.380
D1	7.11	8.13	.280	.320
E	9.65	10.29	.380	.405
E1	6.86	8.13	.270	.320
e	2.54	BSC	.100	BSC
L	14.61	15.88	.575	.625
L1	2.29	2.79	.090	.110
L2	1.02	1.40	.040	.055
L3	1.27	1.78	.050	.070
L4	0	0.38	0	.015
R	0.46	0.74	.018	.029

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETs and IGBTs are covered by one or more of the following U.S. patents: 4,835,592 4,881,106 5,017,508 5,049,961 5,187,117 5,486,715 6,306,728B1 4,850,072 4,931,844 5,034,796 5,063,307 5,237,481 5,381,025