

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

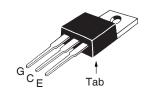
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Preliminary Technical Information

High-Gain IGBT w/ Diode

IXGP24N60C4D1

High-Speed PT Trench IGBT


		G G
Symbol	Test Conditions	Maximum Ratings
V _{CES}	T ₁ = 25°C to 150°C	600

V_{CES} $T_J = 25^{\circ}C$ to 150°C V_{CGR} $T_J = 25^{\circ}C$ to 150°C, $R_{GE} = 1MΩ$ V_{GES} Continuous	600 600 ±20	V V
V_{GER} $T_{J} = 25^{\circ}C$ to $150^{\circ}C$, $R_{GE} = 1M\Omega$ V_{GES} Continuous		<u>-</u>
V _{GES} Continuous	±20	\/
V Transient		V
V _{GEM} Transient	±30	V
T_{C25} $T_{C} = 25^{\circ}C$	56	А
I_{C110} $T_{C} = 110^{\circ}C$	24	Α
I_{F110} $T_{\text{C}} = 110^{\circ}\text{C}$	30	Α
I_{CM} $T_{C} = 25^{\circ}C$, 1ms	130	Α
SSOA $V_{GE} = 15V, T_{VJ} = 125^{\circ}C, R_{G} = 10\Omega$	I _{CM} = 48	A
(RBSOA) Clamped Inductive Load	$@ \leq V_{CES}$	
$\overline{\mathbf{P_c}}$ $T_c = 25^{\circ}C$	190	W
T,	-55 +150	°C
T _{JM}	150	°C
T _{stg}	-55 +150	°C
T _L Maximum Lead Temperature for Soldering	300	°C
T _{SOLD} 1.6 mm (0.062in.) from Case for 10s	260	°C
M _d Mounting Torque	1.13/10	Nm/lb.in.
Weight	3	g

SymbolTest ConditionsChara $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		acteristic Values Typ. Max.			
V _{GE(th)}	$I_{\rm C}$ = 250 μ A, $V_{\rm CE}$ = $V_{\rm GE}$	4.0		6.5	V
I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0V$			10	μΑ
	$T_J = 125^{\circ}C$			1.5	mΑ
GES	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA
V _{CE(sat)}	$I_{c} = I_{C110}, V_{GE} = 15V, \text{ Note 1}$ $T_{J} = 125^{\circ}\text{C}$		2.10 1.95	2.70	V

 $egin{array}{lll} V_{\text{CES}} &=& 600V \\ I_{\text{C110}} &=& 24A \\ V_{\text{CE(sat)}} &\leq& 2.70V \\ t_{\text{fi(typ)}} &=& 44ns \end{array}$

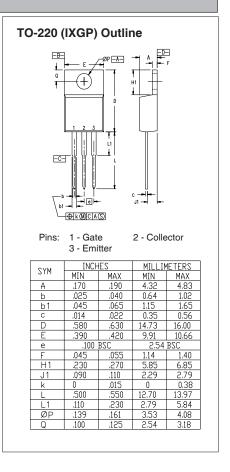
TO-220

G = Gate C = CollectorE = Emitter Tab = Collector

Features

- Optimized for Low Switching Losses
- Square RBSOA
- Anti-Parallel Ultra Fast Diode
- International Standard Package

Advantages


- High Power Density
- Low Gate Drive Requirement

Applications

- Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts

•		Chara Min.	racteristic Values Typ. Max.			
g _{fs}		I _C = I _{C110} , V _{CE} = 10V, Note 1	10	17	S	
C _{ies})			875	pF	
C _{oes}	}	$V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$		62	pF	
C _{res}	J			28	pF	
Qq				64	nC	
Q	}	$I_{\rm C} = I_{\rm C110}, V_{\rm GE} = 15 \rm V, V_{\rm CE} = 0.5 \bullet \rm V_{\rm CES}$		7	nC	
Q _{gc}	J			28	nC	
t _{d(on)}	1			22	ns	
t _{ri}	- 1	Inductive Load, T _J = 25°C		43	ns	
E _{on}	Ţ	$I_{c} = I_{C110}, V_{GE} = 15V$		0.35	mJ	
t _{d(off)}	($V_{CE} = 360V$, $R_{G} = 10\Omega$		192	ns	
t _{fi}		Note 2		44	ns	
E_{off}	J			0.34	0.60 mJ	
t _{d(on)}	7			20	ns	
t _{ri}	-	Inductive Load, T _J = 125°C		32	ns	
E _{on}	Ţ	$I_{\rm C} = I_{\rm C110}, V_{\rm GE} = 15V$		0.37	mJ	
t _{d(off)}	- ($V_{CE} = 360V$, $R_{G} = 10\Omega$		148	ns	
t _{fi}	-	Note 2		115	ns	
E _{off}	<i>J</i>			0.52	mJ	
R _{thJC}					0.65 °C/W	
R _{thCS}				0.21	°C/W	

Reverse Diode (FRED)

Symbo	ol Test Conditions Char	Characteristic Values		
$(T_J = 2)$	5°C, Unless Otherwise Specified) Min.	Тур.	Max.	
V _F	$I_F = 10A, V_{GE} = 0V, Note 1$		3.0	V
I _{RM}	$I_{F} = 12A, V_{GE} = 0V,$	2.5		Α
t _{rr}	\int -di _F /dt = 100A/µs, V _R = 100V, T _J = 125°C	110		ns
t _{rr}	$I_F = 1A$, $V_{GE} = 0V$, $-di_F/dt = 100A/\mu s$, $V_R = 30V$	30		ns
R _{thJC}			2.5	°C/W

Notes:

- 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 2. Switching times & energy losses may increase for higher V_{CE} (clamp), T_J or R_g .

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.