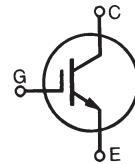


Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

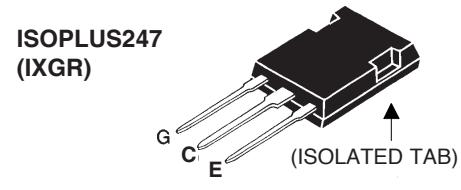
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


HiPerFAST™ IGBT **IXGR 120N60C2**
ISOPLUS247™
Lightspeed 2™ Series
(Electrically Isolated Back Surface)

V_{CES}	=	600	V
I_{C110}	=	60	A
$V_{CE(sat)}$	=	2.7	V
$t_{fi(ty)}$	=	45	ns

Symbol	Test Conditions	Maximum Ratings	
V_{CES}	$T_J = 25^\circ\text{C}$ to 150°C	600	V
V_{CGR}	$T_J = 25^\circ\text{C}$ to 150°C ; $R_{GE} = 1 \text{ M}\Omega$	600	V
V_{GES}	Continuous	± 20	V
V_{GEM}	Transient	± 30	V
I_{C25}	$T_C = 25^\circ\text{C}$ (limited by leads)	75	A
I_{C110}	$T_C = 110^\circ\text{C}$	60	A
I_{CM}	$T_C = 25^\circ\text{C}$, 1 ms	500	A
SSOA (RBSOA)	$V_{GE} = 15 \text{ V}$, $T_{vj} = 125^\circ\text{C}$, $R_G = 4.7 \Omega$ Clamped inductive load @ $V_{CE} \le 600 \text{ V}$	$I_{CM} = 200$	A
P_c	$T_C = 25^\circ\text{C}$	300	W
T_J		-55 ... +150	$^\circ\text{C}$
T_{JM}		150	$^\circ\text{C}$
T_{stg}		-55 ... +150	$^\circ\text{C}$
V_{ISOL}	50/60 Hz, RMS, $t = 1 \text{ minute}$ $I_{ISOL} < 1 \text{ mA}$ $t = 20 \text{ seconds}$	2500 3000	V \sim
F_c	Clamping force	20..120/4.5..25	N/ib
Maximum lead temperature for soldering 1.6 mm (0.062 in.) from case for 10 s		300	$^\circ\text{C}$
Weight		5	g

Symbol	Test Conditions	Characteristic Values		
		($T_J = 25^\circ\text{C}$ unless otherwise specified)	Min.	Typ.
BV_{CES}	$I_C = 1 \text{ mA}$, $V_{GE} = 0 \text{ V}$	600		V
$V_{GE(th)}$	$I_C = 500 \mu\text{A}$, $V_{CE} = V_{GE}$	3.0	5.0	V
I_{CES}	$V_{CE} = V_{CES}$ $V_{GE} = 0 \text{ V}$	$T_J = 125^\circ\text{C}$		$100 \mu\text{A}$ 2 mA
I_{GES}	$V_{CE} = 0 \text{ V}$, $V_{GE} = \pm 20 \text{ V}$			$\pm 200 \text{ nA}$
$V_{CE(sat)}$	$I_C = I_T$, $V_{GE} = 15 \text{ V}$ Note 1	$T_J = 25^\circ\text{C}$ $T_J = 125^\circ\text{C}$	2.3 2.0	2.7 V

G = Gate C = Collector
E = Emitter

Features

- DCB Isolated mounting tab
- Meets TO-247AD package Outline
- High current handling capability
- Latest generation HDMOS™ process
- MOS Gate turn-on
 - drive simplicity

Applications

- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies
- AC motor speed control
- DC servo and robot drives
- DC choppers

Advantages

- Easy assembly
- High power density
- Very fast switching speeds for high frequency applications

Symbol	Test Conditions	Characteristic Values		
		($T_J = 25^\circ\text{C}$ unless otherwise specified)	Min.	Typ.
g_{fs}	$I_C = 60 \text{ A}; V_{CE} = 10 \text{ V}$, Note 1	50	50	75
C_{ies}			11	nF
C_{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		680	pF
C_{res}			190	pF
Q_g			350	nC
Q_{ge}	$I_C = I_T, V_{GE} = 15 \text{ V}, V_{CE} = 0.5 V_{CES}$		72	nC
Q_{gc}			131	nC
$t_{d(on)}$	Inductive load, $T_J = 25^\circ\text{C}$		18	ns
t_{ri}			25	ns
$t_{d(off)}$			95	150
t_{fi}			45	ns
E_{off}			0.9	1.6 mJ
$t_{d(on)}$	Inductive load, $T_J = 125^\circ\text{C}$		18	ns
t_{ri}			25	ns
E_{on}			1.6	mJ
$t_{d(off)}$			130	ns
t_{fi}			85	ns
E_{off}			1.5	mJ
R_{thJC}				0.42 K/W
R_{thJC}			0.15	K/W

Note 1: Pulse test, $t \leq 300 \mu\text{s}$, duty cycle $\leq 2\%$.

2: Test current $I_T = 100 \text{ A}$.

ISOPPLUS 247 Outline

SYM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	.190	.205	4.83	5.21
A1	.090	.100	2.29	2.54
A2	.075	.085	1.91	2.16
b	.045	.055	1.14	1.40
b1	.075	.084	1.91	2.13
b2	.115	.123	2.92	3.12
C	.024	.031	0.61	0.80
D	.819	.840	20.80	21.34
E	.620	.635	15.75	16.13
e	.215 BSC		5.45 BSC	
L	.780	.800	19.81	20.32
L1	.150	.170	3.81	4.32
Q	.220	.244	5.59	6.20
R	.170	.190	4.32	4.83
S	.520	.540	13.21	13.72
T	.620	.640	15.75	16.26
U	.065	.080	1.65	2.03

1 - GATE
2 - DRAIN (COLLECTOR)
3 - SOURCE (EMITTER)
4 - NO CONNECTION

NOTE: This drawing will meet all dimensions requirement of JEDEC outline TO-247AD except screw hole.