mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LIXYS

IXGR 24N60CD1

600 C25 2.5 V_{CE(sat)}=

ISOPLUS247™ (Electrically Isolated Back Surface)

HiPerFAST[™]IGBT

Preliminary data sheet

with **Diode**

Symbol	Test Conditions	Maximum Ratings		
V _{ces}	T _J = 25°C to 150°C	600	V	
V _{CGR}	$T_{J} = 25^{\circ}C$ to $150^{\circ}C$; $R_{GE} = 1 M\Omega$	600	V	
V _{ges}	Continuous	±20	V	
V _{GEM}	Transient	±30	V	
I _{C25}	$T_{c} = 25^{\circ}C$	42	Α	
I _{C90}	$T_{c} = 90^{\circ}C$	22	А	
I _{CM}	$T_c = 25^{\circ}C, 1 \text{ ms}$	80	Α	
SSOA (RBSOA)	$V_{_{GE}}$ = 15 V, T _{vJ} = 125°C, R _G = 22 Ω Clamped inductive load, L = 100 μ H	I _{CM} = 48 @ 0.8 V _{CES}	А	
P _c	$T_c = 25^{\circ}C$	80	W	
Τ,		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
Maximum le 1.6 mm (0.0	ead temperature for soldering 062 in.) from case for 10 s	300	°C	
V _{ISOL}		2500	V	
Weight	TO-247	6	g	

Isolated back surface*

V

Α

V

G = Gate. E = Emitter

C = Collector

* Patent pending

Features

- Silicon chip on Direct-Copper-Bond substrate
 - High power dissipation
 - Isolated mounting surface
 - 2500V electrical isolation
- Low drain to tab capacitance(<35pF)
- Low R_{DS (on)} HDMOSTM process
- Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS) rated
- Fast intrinsic rectifier
- Low gate charge process

Applications

- DC-DC converters
- Battery chargers
- Switched-mode and resonant-mode power supplies
- DC choppers
- AC motor control

Advantages

- Easy assembly
- Space savings
- High power density

LIXYS

Symbol	Test ConditionsCha $(T_J = 25^{\circ}C, unless cmin.$	aracteristic Values otherwise specified) typ. max.		
9 _{fs}	$ I_{\rm c} = I_{\rm T}; V_{\rm CE} = 10 \text{ V}, \qquad 9 $	17		S
C _{ies} C	$V_{05} = 25 V, V_{05} = 0 V, f = 1 MHz$	1500 170		pF pF
C _{res}	J CE / GE /	40		pF
Q _g)	55		nC
\mathbf{Q}_{ge}	$I_{c} = I_{T}, V_{GE} = 15 V, V_{CE} = 0.5 V_{CES}$	13		nC
Q _{gc}	J	17		nC
t _{d(on)}	Inductive load, $T_J = 25^{\circ}C$	15		ns
t _{ri}	$I_{c} = I_{T}, V_{GE} = 15 \text{ V}, L = 300 \mu\text{H}$	25		ns
t _{d(off)}	$V_{CE} = 0.8 \cdot V_{CES}, R_G = R_{off} = 18 \Omega$	75	140	ns
t _{fi}	Remarks: Switching times may increase for V (Clamp) $> 0.8 \cdot V$ higher T or	60	110	ns
E _{off}	increased R_{g}	0.24	0.36	mJ
t _{d(on)}	\int Inductive load, T = 125°C	15		ns
t _{ri}	$I_{-} = I_{-}, V_{} = 15 \text{ V}, L = 300 \mu\text{H}$	25		ns
E _{on}	$V_{cr} = 0.8 \cdot V_{cree}, B_c = B_{cree} = 18 \Omega$	1		mJ
t _{d(off)}	Remarks: Switching times may increase for V_{CE} (Clamp) > 0.8 • V_{CES} , higher T _J or	130		ns
t _{ri}		110		ns
E _{off}	J increased R _g	0.6		mJ
R _{thJC}			0.157	K/W
$\mathbf{R}_{\mathrm{thCK}}$		0.15		K/W

ISOPLUS 247 OUTLINE c 4 5 Ţ e b2 _____ X2 1 Gate, 2 Drain (Collector) 3 Source (Emitter) 4 no connection Dim. Millimeter Inches Min. Max. Min. Max. 5.21 .190 .205 4.83 A A, 2.29 2.54 .090 .100 A 1.91 2.16 .075 .085 b 1.14 1.40 .045 .055 b, 1.91 2.13 .075 .084 b₂ 2.92 .115 3.12 .123 С 0.61 0.80 .031 .024 D 20.80 21.34 .819 .840 Е 15.75 16.13 .620 .635 5.45 BSC .215 BSC е L 19.81 20.32 .780 .800 L1 3.81 4.32 .150 .170 Q 5.59 6.20 .220 .244 R 4.32 4.83 .170 .190

Revers	se Diode (FRED) Cl	Characteristic Value			
Symbo	DI Test Conditions min	typ.	max.	,incu)	
V _F	$I_{F} = I_{T}, V_{GE} = 0 V,$ Pulse test, t ≤ 300 µs, duty cycle d ≤ 2 % $T_{J} = 25^{\circ}C$		1.6 2.5	V V	
I _{RM}	$I_{F} = I_{T}, V_{GE} = 0 \text{ V}, -di_{F}/dt = 100 \text{ A}/\mu\text{s}$ $V_{R} = 100 \text{ V} T_{J} = 100^{\circ}\text{C}$ $I_{F} = 1 \text{ A}; -di/dt = 100 \text{ A}/\mu\text{s}; V_{R} = 30 \text{ V} T_{J} = 25^{\circ}\text{C}$	6 100 25		A ns ns	
$\mathbf{R}_{\mathrm{thJC}}$			1.65	K/W	

Notes: 1. $I_{T} = 24A$

2. See IXGH24N60CD1 data sheet for characteristic curves.

IXYS reserves the right to change limits, test conditions, and dimensions.